Skip to main content

Molecular Analysis of Mitochondrial DNA Point Mutations by Polymerase Chain Reaction

  • Protocol
Clinical Applications of PCR

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 336))

  • 2500 Accesses

Abstract

Mitochondrial respiratory chain disorders are clinically and genetically heterogeneous. There are several mitochondrial DNA (mtDNA) point mutations responsible for common mitochondrial diseases such as mitochondrial encephalopathy, lactic acidosis, stroke-like events, myoclonic epilepsy and ragged red fibers, neuropathy, ataxia, retinitis pigmentosa, and Leber's hereditary optic neuropathy. As a result of the clinical overlap, it is usually necessary to analyze more than one mutation for a patient suspected of a mitochondrial disorder. Molecular diagnosis is often performed using polymerase chain reaction (PCR)/restriction fragment length polymorphism (RFLP) analysis of the most likely point mutations. However, this method is time-consuming and often produces problems associated with incomplete restriction enzyme digestion. In addition, PCR/ RFLP analysis may not be able to detect a low percentage of heteroplasmy. For a more effective method of diagnosing mtDNA disorders, we have developed a multiplex PCR/ allele-specific oligonucleotide (ASO) dot blot hybridization method to simultaneously analyze 11 point mutations. The PCR products from a DNA sample containing a homoplasmic wild-type or mutant mtDNA sequence will hybridize to either the wildtype or the mutant ASO probe. The PCR products of a heteroplasmic DNA sample will hybridize to both wild-type and mutant ASO probes. This PCR/ASO method allows the detection of low percentage mutant heteroplasmy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shoffner, J. and Wallace, D. (1995) Oxidative phosphorylation diseases, in. McGraw-Hill New York: pp. 1535–629.

    Google Scholar 

  2. Smeitink, J., van den Heuvel, L., and DiMauro, S. (2001) The genetics and pathology of oxidative phosphorylation. Nat. Rev. Genet. 2, 342–352.

    Article  PubMed  CAS  Google Scholar 

  3. Wallace, D. C. (1992) Diseases of the mitochondrial DNA. Annu. Rev. Biochem. 61, 1175–1212.

    Article  PubMed  CAS  Google Scholar 

  4. Wong, L. J. and Senadheera, D. (1997) Direct detection of multiple point mutations in mitochondrial DNA. Clin. Chem. 43, 1857–1861.

    PubMed  CAS  Google Scholar 

  5. Wong, L. J. and Lam, C. W. (1997) Alternative, noninvasive tissues for quantitative screening of mutant mitochondrial DNA. Clin. Chem. 43, 1241–1243.

    PubMed  CAS  Google Scholar 

  6. Lahiri, D. K. and Nurnberger, J. I., Jr. (1991) A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 19, 5444.

    Article  PubMed  CAS  Google Scholar 

  7. Liang, M. H. and Wong, L. J. (1998) Yield of mtDNA mutation analysis in 2,000 patients. Am. J. Med. Genet. 77, 395–400.

    Article  PubMed  CAS  Google Scholar 

  8. Liang, M. H., Johnson, D. R., and Wong, L. J. (1998) Preparation and validation of PCR-generated positive controls for diagnostic dot blotting. Clin. Chem. 44, 1578–1579.

    PubMed  CAS  Google Scholar 

  9. DeMarchi, J. M., Richards, C. S., Fenwick, R. G., Pace, R., and Beaudet, A. L. (1994) A robotics-assisted procedure for large scale cystic fibrosis mutation analysis. Hum. Mutat. 4, 281–290.

    Article  PubMed  CAS  Google Scholar 

  10. DeMarchi, J. M., Beaudet, A. L., Caskey, C. T., and Richards, C. S. (1994) Experience of an academic reference laboratory using automation for analysis of cystic fibrosis mutations. Arch. Pathol. Lab. Med. 118, 26–32.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Wong, LJ., Cobb, B.R., Chen, TJ. (2006). Molecular Analysis of Mitochondrial DNA Point Mutations by Polymerase Chain Reaction. In: Lo, Y.M.D., Chiu, R.W.K., Chan, K.C.A. (eds) Clinical Applications of PCR. Methods in Molecular Biology™, vol 336. Humana Press. https://doi.org/10.1385/1-59745-074-X:135

Download citation

  • DOI: https://doi.org/10.1385/1-59745-074-X:135

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-348-0

  • Online ISBN: 978-1-59745-074-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics