Skip to main content

Isolation of Rat Bone Marrow Stem Cells

  • Protocol
Cytochrome P450 Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 320))

Abstract

Stem cell research has become an important field of study for molecular, cellular, and clinical biology as well as pharmaco-toxicology. Indeed, stem cells have a strong proliferative and unlimited self-renewal potential and are multipotent. In vivo as well as in vitro studies have confirmed the differentiation of adult bone marrow stem cells into muscle cells, adipocytes, cardiomyocytes, neuroectodermal cells, osteoblasts, chondroblasts, and so on. Recently, it has been shown that, under appropriate culture conditions, adult bone marrow stem cells may also differentiate into hepatocyte-like cells. Because of their extensive proliferative capacity and pluripotency, adult bone marrow stem cells could serve in the future as an unlimited source of hepatocytes for pharmaco-toxicological research and testing. We describe a protocol for isolation of mononuclear cells from adult rat bone marrow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faris, R. A., Konkin, T., and Halpert, G. (2001) Liver stem cells: a potential source of hepatocytes for the treatment of human liver disease. Artif. Organs 25, 513–521.

    Article  CAS  PubMed  Google Scholar 

  2. Schwartz, R. E., Reyes, M., Koodie, L., et al. (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Invest. 109, 1291–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferrari, G., Cusella-De Angelis, G., Coletta, M., et al. (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530.

    Article  CAS  PubMed  Google Scholar 

  4. Umezawa, A., Maruyama, T., Segawa, K., Shadduck, R. K., Waheed, A., and Hata, J. (1992) Multipotent marrow stromal cell line is able to induce hematopoiesis in vivo. J. Cell. Physiol. 151, 197–205.

    Article  CAS  PubMed  Google Scholar 

  5. Ashton, B. A., Allen, T. D., Howlett, C. R., Eaglesom, C. C., Hattori, A., and Owen, M. (1980) Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin. Orthop. 151, 294–307.

    PubMed  Google Scholar 

  6. Makino, S., Fukuda, K., Miyoshi, S., et al. (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103, 697–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., et al. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49.

    Article  CAS  PubMed  Google Scholar 

  8. Theise, N. D., Nimmakayalu, M., Gardner, R., et al. (2000) Liver from bone marrow in humans. Hepatology 32, 11–16.

    Article  CAS  PubMed  Google Scholar 

  9. Alison, M. R., Poulsom, R., Jeffery, R., et al. (2000) Hepatocytes from non-hepatic adult stem cells. Nature 406, 257.

    Article  CAS  PubMed  Google Scholar 

  10. Petersen, B. E., Bowen, W. C., Patrene, K. D., et al. (1999) Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170.

    Article  CAS  PubMed  Google Scholar 

  11. Jackson, K. A., Majka, S. M., Wang, H., et al. (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huttmann, A., Li, C. L., and Duhrsen, U. (2003) Bone marrow-derived stem cells and “plasticity.” Ann. Hematol. 82, 599–604.

    Article  CAS  PubMed  Google Scholar 

  13. Deb, A., Wang, S., Skelding, K. A., Miller, D., Simper, D., and Caplice, N. M. (2003) Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation 107, 1247–1249.

    Article  PubMed  Google Scholar 

  14. Gussoni, E., Bennett, R. R., Muskiewicz, K. R., et al. (2002) Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. J. Clin. Invest. 110, 807–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Horwitz, E. M., Prockop, D. J., Fitzpatrick, L. A., et al. (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med. 5, 309–313.

    Article  CAS  PubMed  Google Scholar 

  16. Mezey, E., Key, S., Vogelsang, G., Szalayova, I., Lange, G. D., and Crain, B. (2003) Transplanted bone marrow generates new neurons in human brains. Proc. Natl. Acad. Sci. USA 100, 1364–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tran, S. D., Pillemer, S. R., Dutra, A., et al. (2003) Differentiation of human bone marrow-derived cells into buccal epithelial cells in vivo: a molecular analytical study. Lancet 361, 1084–1088.

    Article  PubMed  Google Scholar 

  18. Weimann, J. M., Charlton, C. A., Brazelton, T. R., Hackman, R. C., and Blau, H. M. (2003) Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc. Natl. Acad. Sci. USA 100, 2088–2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Friedenstein, A. J., Gorskaja, J. F., and Kulagina, N. N. (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 4(5), 267–274.

    CAS  PubMed  Google Scholar 

  20. Friedenstein, A. J., Chailakhyan, R. K., and Gerasimov, U. V. (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 20(3), 263–272.

    CAS  PubMed  Google Scholar 

  21. Owen, M. and Friedenstein, A. J. (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp. 136, 42–60.

    CAS  PubMed  Google Scholar 

  22. Haynesworth, S. E., Goshima, J., Goldberg, V. M., and Caplan, A. I. (1992) Characterization of cells with osteogenic potential from human marrow. Bone 13(1), 81–88.

    Article  CAS  PubMed  Google Scholar 

  23. Gronthos, S., Graves, S. E., Ohta, S., and Simmons, P. J. (1994) The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood 84(12), 4164–4173.

    CAS  PubMed  Google Scholar 

  24. Wakitani, S., Saito, T., and Caplan, A. I. (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18(12), 1417–1426.

    Article  CAS  PubMed  Google Scholar 

  25. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.

    Article  CAS  PubMed  Google Scholar 

  26. Reyes, M., Lund, T., Lenvik, T., Aguiar, D., Koodie, L., and Verfaillie, C. M. (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98(9), 2615–2625.

    Article  CAS  PubMed  Google Scholar 

  27. Reyes, M. and Verfaillie C. M. (2001) Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann. NY Acad. Sci. 938, 231–233, discussion 233-235.

    Article  CAS  PubMed  Google Scholar 

  28. Mallet, V. O., Mitchell, C., Mezey, E., et al. (2002) Bone marrow transplantation in mice leads to a minor population of hepatocytes that can be selectively amplified in vivo. Hepatology 35, 799–804.

    Article  PubMed  Google Scholar 

  29. Theise, N. D., Badve, S., Saxena, R. et al. (2000) Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31, 235–240.

    Article  CAS  PubMed  Google Scholar 

  30. Lagasse, E., Connors, H., Al-Dhalimy, M., et al. (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 6, 1229–1234.

    Article  CAS  PubMed  Google Scholar 

  31. http://www.Osiristx.com; consultation: 11/2002–1/2004.

  32. Pearson, H. (2002) Stem cells: articles of faith adulterated. Nature 420, 734–735.

    Article  CAS  PubMed  Google Scholar 

  33. Kopen, G. C., Prockop, D. J., and Phinney, D. G. (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. USA 96, 10,711–10,716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., et al. (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol. 164, 247–256.

    Article  CAS  PubMed  Google Scholar 

  35. Woodbury, D., Schwarz, E. J., Prockop, D. J., and Black, I. B. (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61, 364–370.

    Article  CAS  PubMed  Google Scholar 

  36. Brazelton, T. R., Rossi, F. M., Keshet, G. I., and Blau, H. M. (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779.

    Article  CAS  PubMed  Google Scholar 

  37. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., McKercher, S. R. (2000) Transplanted bone marrow generates new neurons in human brains. Science 290, 1779–1782.

    Article  CAS  PubMed  Google Scholar 

  38. Pereira, R. F., Halford, K. W., et al. (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc. Natl. Acad. Sci. USA 92, 4857–4861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pereira, R. F., O’Hara, M. D., Laptev, A. V., et al. (1998) Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc. Natl. Acad. Sci. USA 95, 1142–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gussoni, E., Soneoka, Y., Strickland, C. D., et al. (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394.

    CAS  PubMed  Google Scholar 

  41. Orlic, D., Kajstura, J., Chimenti, S., et al. (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705.

    Article  CAS  PubMed  Google Scholar 

  42. Orlic, D., Kajstura, J., Chimenti, S., et al. (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. USA 98, 10,344–10,349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a PhD grant from the Institute for the Promotion of Innovation Through Science and Technology in Flanders (IWT-Vlaanderen) and grants from the Fund of Scientific Research Flanders (FWO), Belgium; and the Research Council of the Vrije Universiteit Brussel, Belgium.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Snykers, S., Vanhaecke, T., Rogiers, V. (2006). Isolation of Rat Bone Marrow Stem Cells. In: Phillips, I.R., Shephard, E.A. (eds) Cytochrome P450 Protocols. Methods in Molecular Biology, vol 320. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-998-2:265

Download citation

  • DOI: https://doi.org/10.1385/1-59259-998-2:265

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-441-8

  • Online ISBN: 978-1-59259-998-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics