Skip to main content

Detection of MicroRNAs and Assays to Monitor MicroRNA Activities In Vivo and In Vitro

  • Protocol
RNA Silencing

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 309))

Abstract

MicroRNAs (miRNAs) are approx 22-nucleotide (nt) regulatory RNAs derived from endogenous genes and processed from longer (approx 70 nt, in animals) precursor RNAs (pre-miRNAs) (18). miRNAs bind to Argonaute (Ago) proteins, such as Ago-2 (also known as eIF2C2) (6,9), and typically associate with additional proteins to form microribonucleoproteins (miRNPs) (6). Another class of approx 22-nt RNAs, termed short, interfering RNAs (siRNAs), is functionally related to miRNAs (10,11). siRNAs are processed from double-stranded RNA (dsRNA), bind to Argonaute proteins, and could assemble with additional proteins to form complexes termed RNA-induced silencing complexes (RISCs) (12). Ago-2 is the endonuclease that cleaves the RNAs targeted by miRNAs or siRNAs (1316). miRNPs and RISCs are the effector complexes that mediate translational repression or endonucleolytic cleavage of cognate mRNAs. The function of miRNAs is largely dictated by the degree of complementarity between the miRNA and its RNA target. If the complementarity is extensive, the Ago2 found in miRNPs/RISCs, cleaves a single phosphodiester bond on the target RNA, located across from the middle of the guide si/miRNA (11,17). If the complementarity is partial, the stability of the target mRNA is not affected, but its translation is repressed (1820). In both cases, near perfect complementarity of the proximal (towards the 5′ end) portion of miRNAs is required for target mRNA recognition (2126), and if the complementarity extends beyond the 10th nucleotide of the miRNA, target mRNA cleavage occurs (27,28). We describe methods for the detection of miRNAs by Northern blots, reporter-based assays that monitor miRNA-directed gene expression regulation in vivo, and an in vitro assay that recapitulates miRNA-dependent endonucleolytic cleavage of RNA targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, R., Feinbaum, R., and Ambros, V. (2004) A short history of a short RNA. Cell 116, S89–S92, and one page following S96.

    Article  PubMed  CAS  Google Scholar 

  2. Ruvkun, G., Wightman, B., and Ha, I. (2004) The 20 years it took to recognize the importance of tiny RNAs. Cell 116, S93–S96, and two pages following S96.

    Article  PubMed  CAS  Google Scholar 

  3. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs. Science 294, 853–858.

    Article  PubMed  CAS  Google Scholar 

  4. Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862.

    Article  PubMed  CAS  Google Scholar 

  5. Lee, R. C., and Ambros, V. (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864.

    Article  PubMed  CAS  Google Scholar 

  6. Mourelatos, Z., Dostie, J., Paushkin, S., et al. (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 16, 720–728.

    Article  PubMed  CAS  Google Scholar 

  7. Carrington, J. C., and Ambros, V. (2003) Role of microRNAs in plant and animal development. Science 301, 336–338.

    Article  PubMed  CAS  Google Scholar 

  8. Ambros, V., Bartel, B., Bartel, D. P., et al. (2003) A uniform system for microRNA annotation. RNA 9, 277–279.

    Article  PubMed  CAS  Google Scholar 

  9. Carmell, M. A., Xuan, Z., Zhang, M. Q., and Hannon, G. J. (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733–2742.

    Article  PubMed  CAS  Google Scholar 

  10. Hamilton, A. J. and Baulcombe, D. C. (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952.

    Article  PubMed  CAS  Google Scholar 

  11. Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001) RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. 15, 188–200.

    Article  PubMed  CAS  Google Scholar 

  12. Murchison, E. P. and Hannon, G. J. (2004) miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr. Opin. Cell Biol. 16, 223–229.

    Article  PubMed  CAS  Google Scholar 

  13. Liu, J., Carmell, M. A., Rivas, F. V., et al. (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441.

    Article  PubMed  CAS  Google Scholar 

  14. Song, J. J., Smith, S. K., Hannon, G. J., and Joshua-Tor, L. (2004) Crystal structure of argonaute and its implications for RISC slicer activity. Science 305, 1434–1437.

    Article  PubMed  CAS  Google Scholar 

  15. Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y. Teng, G., and Tuschl, T. (2004) Human argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell. 15, 185–197.

    Article  PubMed  CAS  Google Scholar 

  16. Rand, T. A., Ginalski, K., Grishin, N. V., and Wang, X. (2004) Biochemical identification of argonaute2 as the sole protein required for RNA-induced silencing complex activity. Proc. Natl. Acad. Sci. USA 101, 14,385–14,389.

    Article  PubMed  CAS  Google Scholar 

  17. Hutvagner, G. and Zamore, P. D., (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060.

    Article  PubMed  CAS  Google Scholar 

  18. Olsen, P. H., and Ambros, V. (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680.

    Article  PubMed  CAS  Google Scholar 

  19. Seggerson, K., Tang, L., and Moss, E. G. (2002) Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev. Biol. 243, 215–225.

    Article  PubMed  CAS  Google Scholar 

  20. Nelson, P. T., Hatzigeorgiou, A. G., and Mourelatos, Z. (2004) miRNP: mRNA association in polyribosomes in a human neuronal cell line. RNA 10, 387–394.

    Article  PubMed  CAS  Google Scholar 

  21. Lai, E. C. (2002) Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363–364.

    Article  PubMed  CAS  Google Scholar 

  22. Stark, A., Brennecke, J., Russell, R. B., and Cohen, S. M. (2003) Identification of Drosophila microRNA targets. PLoS Biol. 1, 1–13.

    Article  Google Scholar 

  23. Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., and Marks, D. S. (2003) MicroRNA targets in Drosophila. Genome Biol. 5, R1.

    Article  PubMed  Google Scholar 

  24. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., and Burge, C. B. (2003) Prediction of mammalian microRNA targets. Cell 115, 787–798.

    Article  PubMed  CAS  Google Scholar 

  25. Doench, J. G. and Sharp, P. A. (2004) Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511.

    Article  PubMed  CAS  Google Scholar 

  26. Kiriakidou, M., Nelson, P. T., Kouranov, A., et al. (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev. 18, 1165–1178.

    Article  PubMed  CAS  Google Scholar 

  27. Martinez, J. and Tuschl, T. (2004) RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev. 18, 975–980.

    Article  PubMed  CAS  Google Scholar 

  28. Haley, B. and Zamore, P. D. (2004) Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol. 11, 599–606.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. G. Dreyfuss for the 8C7 and 17D10 antibodies. This work was supported by grants from the NIH (M.K., P.N., Z.M.), a Pfizer Fellowship for Rheumatology and Immunology (M.K.), the Department of Pathology & Laboratory Medicine, University of Pennsylvania School of Medicine, and the PENN Genomic Institute (Z.M.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Kiriakidou, M., Nelson, P., Lamprinaki, S., Sharma, A., Mourelatos, Z. (2005). Detection of MicroRNAs and Assays to Monitor MicroRNA Activities In Vivo and In Vitro. In: Carmichael, G.G. (eds) RNA Silencing. Methods in Molecular Biology™, vol 309. Humana Press. https://doi.org/10.1385/1-59259-935-4:295

Download citation

  • DOI: https://doi.org/10.1385/1-59259-935-4:295

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-436-4

  • Online ISBN: 978-1-59259-935-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics