Skip to main content

Down-Regulating Gene Expression by RNA Interference in Trypanosoma brucei

  • Protocol
RNA Silencing

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 309))

Abstract

RNA interference (RNAi) in Trypanosoma brucei was first reported in 1998 (1). As in other eukaryotes, interference involves digestion of the interfering double-stranded RNA into short fragments (2), a polysome-associated complex (3), and Argonaute protein (4,5). T. brucei is an ideal organism for testing gene function by RNAi. A complete genome sequence is available, and liquid suspension culture is unproblematic. Various combinations of RNAi vector and host trypanosomes, with different advantages, are available; if procedures are working optimally, it should be possible to obtain a stable cell line with inducible RNAi within 2 wk. The RNAi process itself is apparently not essential for parasite survival (4), although some adverse effects have been reported (5). To analyze the process itself, it is possible to delete candidate genes completely, as the efficiency of homologous recombination is essentially 100%; in situ epitope tagging can also be effected through homologous recombination (6). For general reviews of the peculiarities of trypanosome gene expression and RNA processing, see refs. 7 and 8, and for pre-RNAi methods, such as inducible gene expression and knockouts by homologous recombination, see ref. 9. A few recent applications of RNAi in trypanosomes are found in refs. 1016. Importantly, in trypanosomes, RNAi can also be used to deplete nuclear RNAs (8,17). In this chapter, we will describe two different options for the construction of RNAi vectors, followed by methods for trypanosome culture and selection of transfectants. At the end, we will highlight various options for testing of phenotypes, as well as various pitfalls with working with RNAi in trypanosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ngo, H., Tschudi, C., Gull, K., and Ullu, E. (2002) Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 95, 14,687–14,692.

    Article  Google Scholar 

  2. Djikeng, A., Shi, H., Tschudi, C., and Ullu, E. (2001) RNA interference in Trypanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24-26-nucleotide RNAs. RNA 7, 1522–1530.

    PubMed  CAS  Google Scholar 

  3. Djikeng, A., Shi, H., Tschudi, C., Shen, S., and Ullu, E. (2003) An siRNA ribonucleoprotein is found associated with polyribosomes in Trypanosoma brucei. RNA 9, 802–808.

    Article  PubMed  CAS  Google Scholar 

  4. Shi, H., Djikeng, A., Tschudi, C., and Ullu, E. (2004) Argonaute protein in the early divergent eukaryote Trypanosoma brucei: control of small interfering RNA accumulation and retroposon transcript abundance. Mol. Cell Biol. 24, 420–427.

    Article  PubMed  CAS  Google Scholar 

  5. Durand-Dubief, M. and Bastin, P. (2003) TbAGO1, an Argonaute protein required for RNA interference, is involved in mitosis and chromosome segregation in Trypanosoma brucei. BMC Biol. 1, 2.

    Article  PubMed  Google Scholar 

  6. Shen, S., Arhin, G. K., Ullu, E., and Tschudi, C. (2001) In vivo epitope tagging of Trypanosoma brucei genes using a one step PCR-based strategy. Mol. Biochem. Parasitol. 113, 171–173.

    Article  PubMed  CAS  Google Scholar 

  7. Clayton, C. E. (2002) Developmental regulation without transcriptional control? From fly to man and back again. EMBO J. 21, 1881–1888.

    Article  PubMed  CAS  Google Scholar 

  8. Liang, X., Haritan, A., Uliel, S., and Michaeli, S. (2003) Trans and cis splicing in trypanosomatids: mechanism, factors, and regulation. Euk. Cell 2, 830–840.

    CAS  Google Scholar 

  9. Clayton, C. E. (1999) Genetic manipulation of Kinetoplastida. Parasitol. Today 15, 372–378.

    Article  PubMed  CAS  Google Scholar 

  10. Morris, J. C., Wang, Z., Drew, M. E., and Englund, P. T. (2002) Glycolysis modulates trypanosome glycoprotein expression as revealed by an RNAi library. EMBO J. 21, 4429–4438.

    Article  PubMed  CAS  Google Scholar 

  11. McKean, P. G., Baines, A., Vaugha, S., and Gull, K. (2003) Gamma-tubulin functions in the nucleation of a discrete subset of microtubules in the eukaryotic flagellum. Curr. Biol. 13, 598–602.

    Article  PubMed  CAS  Google Scholar 

  12. Drew, M. E., Morris, J. C., Wang, Z., et al. (2003) The adenosine analog tubercidin inhibits glycolysis in Trypanosoma brucei as revealed by an RNA interference library. J. Biol. Chem. 278, 46,596–46,600.

    Article  PubMed  CAS  Google Scholar 

  13. Estévez, A. M., Lehner, B., Sanderson, C. M., Ruppert, T., and Clayton, C. (2003) The roles of inter-subunit interactions in exosome stability. J. Biol. Chem. 278, 34,943–34,951.

    Article  PubMed  Google Scholar 

  14. Guerra-Giraldez, C., Quijada, L., and Clayton, C. E. (2002) Compartmentation of enzymes in a microbody, the glycosome, is essential in Trypanosoma brucei. J. Cell Sci. 115, 2651.

    PubMed  CAS  Google Scholar 

  15. Allen, C. L., Goulding, D., and Field, M. C. (2003) Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J. 22, 4991–5002.

    Article  PubMed  CAS  Google Scholar 

  16. Hammarton, T. C., Engstler, M., and Mottram, J. C. (2004) The Trypanosoma brucei cyclin, CYC2, is required for cell cycle progression through G1 phase and for maintenance of procyclic form cell morphology. J. Biol. Chem. 279, 24,757–24,764.

    Article  PubMed  CAS  Google Scholar 

  17. Mandelboim, M., Barth, S., Biton, M., Liang, X., and Michaeli, S. (2003) Silencing of Sm proteins in Trypanosoma brucei by RNA interference captured a novel cytoplasmic intermediate in spliced leader RNA biogenesis. J. Biol. Chem. 278, 51,469–51,478.

    Article  PubMed  CAS  Google Scholar 

  18. Wang, Z., Morris, J. C., Drew, M. E., and Englund, P. T. (2000) Inhibition of Trypanosoma brucei gene expression by RNA interference using an integratable vector with opposing T7 promoters. J. Biol. Chem. 275, 40,174–40,179.

    Article  PubMed  CAS  Google Scholar 

  19. LaCount, D. J., Bruse, S., Hill, K. L., and Donelson, J. E. (2000) Double-stranded RNA interference in Trypanosoma brucei using head-to-head promoters. Mol. Biochem. Parasitol. 111, 67–76.

    Article  PubMed  CAS  Google Scholar 

  20. Morris, J. C., Wang, Z., Drew, M. E., Paul, K. S., and Englund, P. T. (2001) Inhibition of bloodstream form Trypanosoma brucei gene expression by RNA interference using the pZJM dual T7 vector. Mol. Biochem. Parasitol. 117, 111–113.

    Article  PubMed  CAS  Google Scholar 

  21. Bastin, P., Ellis, K., Kohl, L., and Gull, K. (2000) Flagellum ontogeny in trypanosomes studies via an inherited and regulated RNA interference system. J. Cell. Sci. 113, 3321–3328.

    PubMed  CAS  Google Scholar 

  22. Shi, H., Djikeng, A., Mark, T., Wirtz, E., Tschudi, C., and Ullu, E. (2000) Genetic interference in Trypanosoma brucei by heritable and inducible double-stranded RNA. RNA 6, 1069–1076.

    Article  PubMed  CAS  Google Scholar 

  23. Biebinger, S., Wirtz, L. E., and Clayton C. E. (1997) Vectors for inducible overexpression of potentially toxic gene products in bloodstream and procyclic Trypanosoma brucei. Mol. Biochem. Parasitol. 85, 99–112.

    Article  PubMed  CAS  Google Scholar 

  24. Wirtz, E., Leal, S., Ochatt, C., and Cross, G. A. M. (1999) A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. Biochem. Parasitol. 99, 89–102.

    Article  PubMed  CAS  Google Scholar 

  25. Wickstead, B., Ersfeld, K., and Gull, K. (2002) Targeting of a tetracyclineinducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol. Biochem. Parasitol. 125, 211–216.

    Article  PubMed  CAS  Google Scholar 

  26. Alibu, P., Storm, L., Haile, S., Horn, D., and Clayton, C. (2005) A doubly inducible system for RNA interference and rapid RNAi plasmid construction in Trypanosoma brucei. Mol. Biochem. Parasitol. 139, 75–82.

    Article  PubMed  CAS  Google Scholar 

  27. Duszenko, M., Ferguson, M. A. J., Lamont, G., Rifkin, M. R., and Cross, G. A. M. (1986) Cysteine eliminates the feeder cell requirement for cultivation of Trypanosoma brucei bloodstream forms in vitro. J. Exp. Med. 162, 1256–1263.

    Article  Google Scholar 

  28. Hirumi, H. and Hirumi, K. (1989) Continuous cultivation of Trypanosoma brucei bloodstream forms in a medium containing a low concentration of serum protein without feeder cell layers. J. Parasitol. 75, 985–989.

    Article  PubMed  CAS  Google Scholar 

  29. Carruthers, V. B. and Cross, G. A. M. (1992) High efficiency clonal growth of bloodstream-and insect-form Trypanosoma brucei on agarose plates. Proc. Natl. Acad. Sci. USA 89, 8818–8821.

    Article  PubMed  CAS  Google Scholar 

  30. Ziegelbauer, K., Quinten, M., Schwarz, H., Pearson, T. W., and Overath, P. (1990) Synchronous differentiation of Trypanosoma brucei bloodstream to procyclic forms in vitro. Eur. J. Biochem. 192, 373–378.

    Article  PubMed  CAS  Google Scholar 

  31. Vassella, E. and Boshart, M. (1996) High molecular mass agarose matrix supports growth of bloodstream forms of pleomorphic Trypanosoma brucei strains in axenic culture. Mol. Biochem. Parasitol. 82, 91–105.

    Article  PubMed  CAS  Google Scholar 

  32. Brun, R. and Schönenberger, M. (1979) Cultivation and in vitro cloning of procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Trop. 36, 289–292.

    PubMed  CAS  Google Scholar 

  33. Durand-Dubief, M., Kohl, L., and Bastin, P. (2003) Efficiency and specificity of RNA interference generated by intra-and intermolecular double-stranded RNA in Trypanosoma brucei. Mol. Biochem. Parasitol. 129, 11–21.

    Article  PubMed  CAS  Google Scholar 

  34. Redmond, S., Vadivelu, J., and Field, M. C. (2003) RNAit: an automated webbased tool for the selection of RNAi targets in Trypanosoma brucei. Mol. Biochem. Parasitol. 128, 115–118.

    Article  PubMed  CAS  Google Scholar 

  35. Hendriks, E. F., Abdul-Razak, A., and Matthews, K. R. (2003) TbCPSF30 depletion by RNA interference disrupts polycistronic RNA processing in Trypanosoma brucei. J. Biol. Chem. 278, 26,870–26,878.

    Article  PubMed  CAS  Google Scholar 

  36. Häusler, T. and Clayton, C. E. (1996) Post-transcriptional control of hsp 70 mRNA in Trypanosoma brucei. Mol. Biochem. Parasitol. 76, 57–72.

    Article  PubMed  Google Scholar 

  37. Krieger, S., Schwarz, W., Ariyanagam, M. R., Fairlamb, A., Krauth-Siegel, L., and Clayton, C. E. (2000) Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mol. Microbiol. 35, 542–552.

    Article  PubMed  CAS  Google Scholar 

  38. Helfert, S., Estévez, A., Bakker, B., Michels, P., and Clayton, C. E. (2001) The roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei. Biochem J. 357, 55–61.

    Article  Google Scholar 

  39. Maier, A., Lorenz, P., Voncken, F., and Clayton, C. E. (2001) An essential dimeric membrane protein of trypanosome glycosomes. Mol. Microbiol. 39, 1443–1451.

    Article  PubMed  CAS  Google Scholar 

  40. Lorenz, P., Meier, A., Erdmann, R., Baumgart, E., and Clayton, C. (1998) Elongation and clustering of glycosomes in Trypanosoma brucei overexpressing the glycosomal Pex11p. EMBO J. 17, 3542–3555.

    Article  PubMed  CAS  Google Scholar 

  41. Chen, Y., Hung, C.-H., Burderer, T., and Lee, G.-S. M. (2003) Development of RNA interference revertants in Trypanosoma brucei cell lines generated with a double stranded RNA expression construct driven by two opposing promoters. Mol. Biochem. Parasitol. 126, 275–279.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Clayton, C.E., Estévez, A.M., Hartmann, C., Alibu, V.P., Field, M., Horn, D. (2005). Down-Regulating Gene Expression by RNA Interference in Trypanosoma brucei . In: Carmichael, G.G. (eds) RNA Silencing. Methods in Molecular Biology™, vol 309. Humana Press. https://doi.org/10.1385/1-59259-935-4:039

Download citation

  • DOI: https://doi.org/10.1385/1-59259-935-4:039

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-436-4

  • Online ISBN: 978-1-59259-935-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics