Skip to main content

Antibody-Cytokine Fusion Proteins for the Therapy of Cancer

  • Protocol
Adoptive Immunotherapy: Methods and Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 109))

Abstract

In recent years the development of tumor-specific recombinant antibodies fused to immunostimulatory cytokines such as interleukin-2 (IL-2), interleukin-12 (IL-12), and granulocyte/mac rophage colony-stimulating factor (GM-CSF) has provided a promising novel approach to cancer immunotherapy. The combined properties of specific targeting of antibodies and the immune stimulation of cytokines results in high cytokine concentration in the tumor microenvironment, and as a consequence, in an improved tumoricidal activity of the antibody and/or in a secondary effective immune response against the tumor. In the present chapter we describe strategies for the construction, expression, and in vitro characterization of antibody-cytokine fusion proteins, with particular emphasis on antibody/IL-2 fusion proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lode, H. N., Xiang, R., Becker, J. C., Gillies, S. D., and Reisfeld, R. A. (1998) Immunocytokines: a promising approach to cancer immunotherapy. Pharmacol. Ther. 80, 277ā€“292.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Helguera, G., Morrison, S. L., and Penichet, M. L. (2002) Antibody-cytokine fusion proteins: harnessing the combined power of cytokines and antibodies for cancer therapy. Clin. Immunol. 105, 233ā€“246.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Penichet, M. L., Shin, S. U., and Morrison, S. L. (1999) Fab fusion proteins: Immuno-ligands. In: Antibody Fusion Proteins. Chamow, S. M. and Ashkenazi, A., eds. John Wiley & Son, New York, NY, pp. 15ā€“52.

    Google ScholarĀ 

  4. Liu, S. J., Sher, Y. P., Ting, C. C., Liao, K. W., Yu, C. P., and Tao, M. H. (1998) Treatment of B-cell lymphoma with chimeric IgG and single-chain Fv antibody-interleukin-2 fusion proteins. Blood 92, 2103ā€“2112.

    PubMedĀ  CASĀ  Google ScholarĀ 

  5. Hornick, J. L., Khawli, L. A., Hu, P., Lynch, M., Anderson, P. M., and Epstein, A. L. (1997) Chimeric CLL-1 antibody fusion proteins containing granulocyte-macrophage colony-stimulating factor or interleukin-2 with specificity for B-cell malignancies exhibit enhanced effector functions while retaining tumor targeting properties. Blood 89, 4437ā€“4447.

    PubMedĀ  CASĀ  Google ScholarĀ 

  6. Dela Cruz, J. S., Lau, S. Y., Ramirez, E. M., et al. (2003) Protein vaccination with the HER2/neu extracellular domain plus anti-HER2/neu antibody-cytokine fusion proteins induces a protective anti-HER2/neu immune response in mice. Vaccine 21, 1317ā€“1326.

    ArticleĀ  Google ScholarĀ 

  7. Penichet, M. L., Harvill, E. T., and Morrison, S. L. (1998) An IgG3-IL-2 fusion protein recognizing a murine B cell lymphoma exhibits effective tumor imaging and antitumor activity. J. Interferon Cytokine Res. 18, 597ā€“607.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Becker, J. C., Pancook, J. D., Gillies, S. D., Furukawa, K., and Reisfeld, R. A. (1996) T cell-mediated eradication of murine metastatic melanoma induced by targeted interleukin 2 therapy. J. Exp. Med. 183, 2361ā€“2366.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Becker, J. C., Varki, N., Gillies, S. D., Furukawa, K., and Reisfeld, R. A. (1996) Long-lived and transferable tumor immunity in mice after targeted interleukin-2 therapy. J. Clin. Invest. 98, 2801ā€“2804.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Xiang, R., Lode, H. N., Dolman, C. S., et al. (1997) Elimination of established murine colon carcinoma metastases by antibody-interleukin 2 fusion protein therapy. Cancer Res. 57,4948ā€“4955.

    PubMedĀ  CASĀ  Google ScholarĀ 

  11. Hank, J. A. A. M., Gan, J., Sternberg, A., et al. (2003) Clinical Administration of anti-body-cytokine hu14.18-IL-2 induces IL-2-mediated immune activation. In: Proceedings of the American Association for Cancer Research, 94th Annual Meeting. 2nd Ed., Vol. 44, Washington, DC, p. 1156.

    Google ScholarĀ 

  12. Janeway, C. A., Travers, P., Walport, M., and Schlomchick, M. (2001) Immunobiology: the Immune System in Health and Disease. 5th Ed. Garland, New York, NY.

    Google ScholarĀ 

  13. Gillies, S. D., Reilly, E. B., Lo, K. M., and Reisfeld, R. A. (1992) Antibody-targeted interleukin 2 stimulates T-cell killing of autologous tumor cells. Proc. Natl. Acad. Sci. USA 89, 1428ā€“1432.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Harvill, E. T. and Morrison, S. L. (1995) An IgG3-IL2 fusion protein activates complement, binds Fc gamma RI, generates LAK activity and shows enhanced binding to the high affinity IL2-R. Immunotechnology 1, 95ā€“105.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Brambell, F. W., Hemmings, W. A., and Morris, I. G. (1964) A theoretical model of gamma-globulin catabolism. Nature 203, 1352ā€“1354.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Ward, E. S., Zhou, J., Ghetie, V., and Ober, R. J. (2003) Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans. Int. Immunol. 15, 187ā€“195.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Challita-Eid, P. M., Abboud, C. N., Morrison, S. L., et al. (1998) A RANTES-antibody fusion protein retains antigen specificity and chemokine function. J. Immunol. 161, 3729ā€“3736.

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. McGrath, J. P., Cao, X., Schutz, A., et al. (1997) Bifunctional fusion between nerve growth factor and a transferrin receptor antibody. J. Neurosci. Res. 47, 123ā€“133.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Peng, L. S., Penichet, M. L., and Morrison, S. L. (1999) A single-chain IL-12 IgG3 antibody fusion protein retains antibody specificity and IL-12 bioactivity and demonstrates antitumor activity. J. Immunol. 163, 250ā€“258.

    PubMedĀ  CASĀ  Google ScholarĀ 

  20. Lustgarten, J., Marks, J., and Sherman, L. A. (1999) Redirecting effector T cells through their IL-2 receptors. J. Immunol. 162, 359ā€“365.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Halin, C., Gafner, V., Villani, M. E., et al. (2003) Synergistic therapeutic effects of a tumor targeting antibody fragment, fused to interleukin 12 and to tumor necrosis factor alpha. Cancer Res. 63, 3202ā€“3210.

    PubMedĀ  CASĀ  Google ScholarĀ 

  22. Moreland, L. W., Baumgartner, S. W., Schiff, M. H., et al. (1997) Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N. Engl. J. Med. 337, 141ā€“147.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Moreland, L. W., Schiff, M. H., Baumgartner, S. W., et al. (1999) Etanercept therapy in rheumatoid arthritis. A randomized, controlled trial. Ann. Intern. Med. 130, 478ā€“486.

    PubMedĀ  CASĀ  Google ScholarĀ 

  24. Verma, R., Boleti, E., and George, A. J. (1998) Antibody engineering: comparison of bacterial, yeast, insect and mammalian expression systems. J. Immunol. Methods 216, 165ā€“181.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Potter, K. N., Li, Y., and Capra, J. D. (1993) Antibody production in the baculovirus expression system. Int. Rev. Immunol. 10, 103ā€“112.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Yoo, E. M., Chintalacharuvu, K. R., Penichet, M. L., and Morrison, S. L. (2002) Myeloma expression systems. J. Immunol. Methods 261, 1ā€“20.

    PubMedĀ  CASĀ  Google ScholarĀ 

  27. Wright, A., Shin, S. U., and Morrison, S. L. (1992) Genetically engineered antibodies: progress and prospects. Crit. Rev. Immunol. 12, 125ā€“168.

    PubMedĀ  CASĀ  Google ScholarĀ 

  28. Penichet, M. L., Dela Cruz, J. S., Shin, S. U., and Morrison, S. L. (2001) A recombinant IgG3-(IL-2) fusion protein for the treatment of human HER2/neu expressing tumors. Hum. Antibodies 10, 43ā€“49.

    PubMedĀ  CASĀ  Google ScholarĀ 

  29. Shin, S. U., Friden, P., Moran, M., and Morrison, S. L. (1994) Functional properties of antibody insulin-like growth factor fusion proteins. J. Biol. Chem. 269, 4979ā€“4985.

    PubMedĀ  CASĀ  Google ScholarĀ 

  30. Harlow, E. and Lane, D. (1989) Anti-immunoglobulin antibodies. In: Antibodies: A Laboratory Manual. 1st Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 623ā€“631.

    Google ScholarĀ 

  31. Penichet, M. L., Dela Cruz, J. S., Challita-Eid, P. M., Rosenblatt, J. D., and Morrison, S. L. (2001) A murine B cell lymphoma expressing human HER2 / neu undergoes spontaneous tumor regression and elicits antitumor immunity. Cancer Immunol. Immunother. 49, 649ā€“662.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Morrison, S. L. (1994) Cloning, expression, and modification of antibody V regions. In: Current Protocols in Immunology, Vol. 1. Coligan, J. E., Kruisbeek, A. M., Margulies, D. H., Shevach, E. M., and Strober, W., eds. John Wiley & Sons, New York, NY, pp. 2.12.1ā€“2.12.16.

    Google ScholarĀ 

  33. Shin, S. U. and Morrison, S. L. (1990) Expression and characterization of an antibody binding specificity joined to insulin-like growth factor 1: potential applications for cellular targeting. Proc. Natl. Acad. Sci. USA 87, 5322ā€“5326.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Coloma, M. J., Hastings, A., Wims, L. A., and Morrison, S. L. (1992) Novel vectors for the expression of antibody molecules using variable regions generated by polymerase chain reaction. J. Immunol. Methods. 152, 89ā€“104.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Norderhaug, L., Olafsen, T., Michaelsen, T. E., and Sandlie, I. (1997) Versatile vectors for transient and stable expression of recombinant antibody molecules in mammalian cells. J. Immunol. Methods 204, 77ā€“87.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Preston, M. J., Gerceker, A. A., Reff, M. E., and Pier, G. B. (1998) Production and characterization of a set of mouse-human chimeric immunoglobulin G (IgG) subclass and IgA monoclonal antibodies with identical variable regions specific for Pseudomo-nas aeruginosa serogroup O6 lipopolysaccharide. Infect. Immun. 66, 4137ā€“4412.

    PubMedĀ  CASĀ  Google ScholarĀ 

  37. Larrick, J. W., Danielsson, L., Brenner, C. A., Abrahamson, M., Fry, K. E., and Borrebaeck, C. A. (1989) Rapid cloning of rearranged immunoglobulin genes from human hybridoma cells using mixed primers and the polymerase chain reaction. Biochem. Biophys. Res. Commun. 160, 1250ā€“1256.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Powers, D. B. and Marks, J. (1999) Monovalent phage display of Fab and scFv fusions. In: Antibody Fusion Proteins. Chamow, S. M. and Ashkenazi, A., eds. John Wiley & Son, New York, NY, pp. 151ā€“188.

    Google ScholarĀ 

  39. Carter, P., Presta, L., Gorman, C. M., et al. (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl. Acad. Sci. USA 89,4285ā€“4289.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  40. Mulligan, R. C. and Berg, P. (1981) Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase. Proc. Natl. Acad. Sci. USA 78, 2072ā€“2076.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Subcloning. In: Molecular Cloning: A Laboratory Manual. 2nd. Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. F.1ā€“F.11.

    Google ScholarĀ 

  42. Southern, P. J. and Berg, P. (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1,327ā€“341.

    PubMedĀ  CASĀ  Google ScholarĀ 

  43. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Analysis and cloning of eukaryotic genomic DNA. In: Molecular Cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 9.1ā€“9.62.

    Google ScholarĀ 

  44. Challita-Eid, P. M., Penichet, M. L., Shin, S. U., et al. (1998) A B7.1-antibody fusion protein retains antibody specificity and ability to activate via the T cell costimulatory pathway. J. Immunol. 160, 3419ā€“3426.

    PubMedĀ  CASĀ  Google ScholarĀ 

  45. Dela Cruz, J. S., Trinh, K. R., Morrison, S. L., and Penichet, M. L. (2000) Recombinant anti-human HER2/neu IgG3-(GM-CSF) fusion protein retains antigen specificity and cytokine function and demonstrates antitumor activity. J. Immunol. 165, 5112ā€“5121.

    Google ScholarĀ 

  46. Penichet, M. L., Challita, P. M., Shin, S. U., Sampogna, S. L., Rosenblatt, J. D., and Morrison, S. L. (1999) In vivo properties of three human HER2/neu-expressing murine cell lines in immunocompetent mice. Lab. Anim. Sci. 49, 179ā€“188.

    PubMedĀ  CASĀ  Google ScholarĀ 

  47. Deans, R. J., Denis, K. A., Taylor, A., and Wall, R. (1984) Expression of an immunoglobulin heavy chain gene transfected into lymphocytes. Proc. Natl. Acad. Sci. USA 81, 1292ā€“1296.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Foecking, M. K. and Hofstetter, H. (1986) Powerful and versatile enhancer-promoter unit for mammalian expression vectors. Gene 45, 101ā€“105.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. McLean, G. R., Nakouzi, A., Casadevall, A., and Green, N. S. (2000) Human and murine immunoglobulin expression vector cassettes. Mol. Immunol. 37, 837ā€“845.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Harlow, E. and Lane, D. (1989) Electrophoresis. In: Antibodies: A Laboratory Manual. 1st Ed., pp. 635ā€“658.

    Google ScholarĀ 

  51. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Commonly Used Techniques in Molecular Cloning. In: Molecular Cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. E.1ā€“E.39.

    Google ScholarĀ 

  52. Harlow, E. and Lane, D. (1989) Storing and purifying antibodies. In: Antibodies: A Laboratory Manual. 1st Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 285ā€“318.

    Google ScholarĀ 

  53. Harlow, E. and Lane, D. (1989) Immunoaffinity purification. In: Antibodies: A Laboratory Manual. 1st Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 511ā€“551.

    Google ScholarĀ 

  54. Meininger, D. P., Rance, M., Starovasnik, M. A., Fairbrother, W. J., and Skelton, N. J. (2000) Characterization of the binding interface between the E-domain of Staphylococcal protein A and an antibody Fv-fragment. Biochemistry 39, 26ā€“36.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  55. Nelson, D. L., Kurman, C. C., and Serbousek, D. E. (1994) 51Cr release assay of antibody-dependent cell-mediated cytotoxicity (ADCC); In Current Protocols in Immunology, Vol. 2. Coligan, J. E., Kruisbeek, A. M., Margulies, D. H., Shevach, E. M., and Strober, W., eds. John Wiley & Sons, New York, NY, pp. 7.27.1ā€“7.27.8.

    Google ScholarĀ 

  56. Donohue, J. H. and Rosenberg, S. A. (1983) The fate of interleukin-2 after in vivo administration. J. Immunol. 130, 2203ā€“2208.

    PubMedĀ  CASĀ  Google ScholarĀ 

  57. Kendra, K., Gan, J., Ricci, M., et al. (1999) Pharmacokinetics and stability of the ch14.18-interleukin-2 fusion protein in mice. Cancer Immunol. Immunother. 48, 219ā€“229.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  58. Harvill, E. T., Fleming, J. M., and Morrison, S. L. (1996) In vivo properties of an IgG3-IL-2 fusion protein. A general strategy for immune potentiation. J. Immunol. 157, 3165ā€“3170.

    PubMedĀ  CASĀ  Google ScholarĀ 

  59. Becker, J. C., Pancook, J. D., Gillies, S. D., Mendelsohn, J., and Reisfeld, R. A. (1996) Eradication of human hepatic and pulmonary melanoma metastases in SCID mice by anti-body-interleukin 2 fusion proteins. Proc. Natl. Acad. Sci. USA 93, 2702ā€“2707.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  60. Lode, H. N., Xiang, R., Dreier, T., Varki, N. M., Gillies, S. D., and Reisfeld, R. A. (1998) Natural killer cell-mediated eradication of neuroblastoma metastases to bone marrow by targeted interleukin-2 therapy. Blood 91, 1706ā€“1715.

    PubMedĀ  CASĀ  Google ScholarĀ 

  61. Becker, J. C., Varki, N., Gillies, S. D., Furukawa, K., and Reisfeld, R. A. (1996) An anti-body-interleukin 2 fusion protein overcomes tumor heterogeneity by induction of a cellular immune response. Proc. Natl. Acad. Sci. USA 93, 7826ā€“7831.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. Sabzevari, H., Gillies, S. D., Mueller, B. M., Pancook, J. D., and Reisfeld, R. A. (1994) A recombinant antibody-interleukin 2 fusion protein suppresses growth of hepatic human neuroblastoma metastases in severe combined immunodeficiency mice. Proc. Natl. Acad. Sci. USA 91, 9626ā€“9630.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Plasmid vectors. In: Molecular Cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 1.1ā€“1.110.

    Google ScholarĀ 

  64. Chen, T. T., Tao, M. H., and Levy, R. (1994) Idiotype-cytokine fusion proteins as cancer vaccines. Relative efficacy of IL-2, IL-4, and granulocyte-macrophage colony-stimulating factor. J. Immunol. 153, 4775ā€“4787.

    PubMedĀ  CASĀ  Google ScholarĀ 

  65. Harlow, E. and Lane, D. (1989) Bacterial cell wall proteins that bind antibodies. In: Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 615ā€“623.

    Google ScholarĀ 

  66. Harvill, E. T. and Morrison, S. L. (1996) An IgG3-IL-2 fusion protein has higher affinity than hrIL-2 for the IL-2R alpha subunit: real time measurement of ligand binding. Mol. Immunol. 33, 1007ā€“1014.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  67. Liu, Z., Gurlo, T., and von Grafenstein, H. (2000) Cell-ELISA using beta-galactosidase conjugated antibodies. J. Immunol. Methods 234, P153ā€“167.

    ArticleĀ  Google ScholarĀ 

  68. McKenzie, A. N. J. and Zurawski, G. (1994) Measurement of Interleukin-13. In: Current Protocols in Immunology, Vol. 1. Coligan, J. E., Kruisbeek, A. M., Margulies, D. H., Shevach, E. M., and Strober, W., eds. John Wiley & Sons, New York, NY, pp. 6.18.1ā€“6.18.5.

    Google ScholarĀ 

  69. Gieni, R. S., Li, Y., and HayGlass, K. T. (1995) Comparison of [3H]-thymidine incorporation with MTT-and MTS-based bioassays for human and murine IL-2 and IL-4 analysis. Tetrazolium assays provide markedly enhanced sensitivity. J. Immunol. Methods 187, 85ā€“93.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Helguera, G., Penichet, M.L. (2005). Antibody-Cytokine Fusion Proteins for the Therapy of Cancer. In: Ludewig, B., Hoffmann, M.W. (eds) Adoptive Immunotherapy: Methods and Protocols. Methods in Molecular Medicineā„¢, vol 109. Humana Press. https://doi.org/10.1385/1-59259-862-5:347

Download citation

  • DOI: https://doi.org/10.1385/1-59259-862-5:347

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-406-7

  • Online ISBN: 978-1-59259-862-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics