Skip to main content

Producing Bispecific and Bifunctional Antibodies

  • Protocol
Adoptive Immunotherapy: Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 109))

Abstract

Bispecific antibodies are artificially engineered monoclonal antibodies (MAbs) that consist of two distinct binding sites and are capable of binding two different antigens noncovalently. They can be produced by chemical cross-linkage, genetic engineering, or somatic hybridization. This chapter describes a rapid method using somatic fusion to generate hybrid hybridomas (quadromas). Two fluorescence-labeled hybridoma cell lines were fused with polyethylene gly col (PEG) to generate the quadroma. Generation of a quadroma secreting bsMAb against biotin and HRPO is described, along with a benzhydroxamic acid-agarose affinity chromatography procedure to purify the bsMAb-HRPO complex. This bsMAb can be used for ultrasensitive ELISA detection of biotinylated antigens. Essentially a similar method can be used for fusing any two hybridomas for therapeutic applications. Bifunctional antibodies are colinear molecules with one or more paratopes linked with diagnostic or therapeutic molecules. There are some limitations of therapeutic monoclonal antibodies in the clinic that can be overcome by engineering smaller and more effective antibody fragments. Here we describe a stepwise procedure for developing a bifunctional ScFv (bfScFv). We constructed a bfScFv from a hybridoma cell line using PCR strategies. The VL and VH gene segments are linked with a 45-bp linker and fused with a biotin mimic sequence at the 3′ end. This engineered bifunctional antibody fragment gene could be expressed and the protein purified on a large scale in Escherichia coli as inclusion bodies. Such bifunctional antibody molecules could have useful applications in the area of immunodiagnostics and immunotherapy. Similar strategies can be used to incorporate a second single-chain antibody or any nonantibody entity such as a cytokine for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. White., C. A., Weaver, R. L., and Grillo-Lopez, A. J. (2001) Antibody-targeted immuno-therapy for treament of malignancy. Annu. Rev. Med. 52, 125–145.

    Article  PubMed  CAS  Google Scholar 

  2. Kohler, G. and Milstein, C. (1975) Continuous cultures of fused secreting antibody of redefined specificity. Nature 256,495–497.

    Article  PubMed  CAS  Google Scholar 

  3. Winter, G. and Milstein, C. (1991) Man-made antibodies. Nature 349, 293–299.

    Article  PubMed  CAS  Google Scholar 

  4. Pluckthun, A. and Pack, P. (1997) New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnology 3, 83–105.

    Article  PubMed  CAS  Google Scholar 

  5. Bird, R. E., Hardman, K. D., Jacobson, J. W., et al. (dy1988) Single-chain antigen-binding proteins. Science 242, 423–426.

    Article  PubMed  CAS  Google Scholar 

  6. Huston, J.S., Levinson, D., Mudgett-Hunter, M., et al. (dy1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879–5883.

    Article  CAS  Google Scholar 

  7. Nisonoff, A. and Rivers, M. M. (1961) Recombination of a mixture of univalent antibody fragments of different specificity. Arch. Biochem. Biophys. 93, 460–462.

    Article  PubMed  CAS  Google Scholar 

  8. Kriangkum, J., Xu, B., Nagata, L. P., Fulton, R. E., and Suresh, M. R. (2001) Bispecific and bifunctional single chain recombinant antibodies. Biomol. Eng. 18(2), 31–40.

    Article  Google Scholar 

  9. Suresh, M. R., Cuello, C., and Milstein, C. (1986) Advantages of bispecific hybridomas in one-step immunocytochemistry and immunoassays. Proc. Natl. Acad. Sci. USA 83, 7989–7993.

    Article  PubMed  CAS  Google Scholar 

  10. Cao, Y., Christian, S., and Suresh, M. R. (1998) Development of bsMAb anti-biotin x anti-HRPO as a universal immunoprobe for detecting biotinylated macromolecules. J. Immunol. Methods 220, 85–91.

    Article  PubMed  CAS  Google Scholar 

  11. Van Ojik, H. H. and Valerius, T. (dy2001) Preclinical and clinical data with bispecific antibodies recruiting myeloid effector cells for tumor therapy. Crit. Rev.Oncol. Hematol. 38, 47–61.

    Article  PubMed  Google Scholar 

  12. Withoff, S., Helfrich, W., de Leij, L. F. M. H., and Molema, G. (dy2001) Bi-specific antibody therapy for the treatment of cancer. Curr. Opin. Mol. Ther. 3, 53–62.

    PubMed  CAS  Google Scholar 

  13. Talac, R. and Nelson, H. (2000) Current perspectives of bispecific antibody-based immu-notherapy. J. Biol. Regul. Homeost. Agents 14, 175–181.

    PubMed  CAS  Google Scholar 

  14. van Spriel, A. B., van Ojik, H. H., and van De Winkel, J. G. (dy2000) Immunotherapeutic perspective for bispecific antibodies. Immunol. Today 21, 391–397.

    Article  PubMed  Google Scholar 

  15. Kroesen, B. J., Helfrich, W., Molema, G., and de Leij, L. (dy1998) Bispecific antibodies for treatment for of cancer in experimental animal models and man. Adv. Drug. Deliv. Rev. 31, 105–129.

    Article  PubMed  CAS  Google Scholar 

  16. Wang, H., Liu, Y., Wei, L., and Guo, Y. (2000) Bi-specific antibodies in cancer therapy. Adv. Exp. Med. Biol. 465, 369–380.

    Article  PubMed  CAS  Google Scholar 

  17. Koelemij, R., Kuppen, P. J., van de Velde, C. J., Fleuren, G. J., Hagenaars, M., and Eggermont, A. M. (dy1999) Bispecific antibodies in cancer therapy, from the laboratory to the clinic. J. Immunotherapy 22, 514–524.

    Article  CAS  Google Scholar 

  18. Segal, D. M., Weiner, G. J., and Weiner, L. M. (1999) Bispecific antibodies in cancer therapy. Curr. Opin. Immunol. 11, 558–562.

    Article  PubMed  CAS  Google Scholar 

  19. Cao, Y. and Lam, L. (2003) Bispecific antibody conjugates in therapeutics. Adv. Drug. Deliv. Reviews, 55171–197.

    Article  CAS  Google Scholar 

  20. Cao, Y. and Suresh, M. R. (1998) Bispecific antibodies as novel bioconjugates. Biocon-jugate Chemistry 9(8), 635–644.

    Article  Google Scholar 

  21. Milstein, C. and Cuello, A. C. (1983) Hybrid hybridomas and their use in immunohis-tochemistry. Nature 305, 537–540.

    Article  PubMed  CAS  Google Scholar 

  22. Nolan, O. and Kennedy, O. R. (1990) Bifunctional antibodies: concept, production and applications. Biochem. Biophys. Acta 1040, 1–11.

    Article  PubMed  CAS  Google Scholar 

  23. Karawajew, L., Behrsing, O., Kaiser, G., and Micheel, B. (1988) Production and ELISA application of bispecific monoclonal antibodies against fluorescein isothiocyanate (FITC) and horseradish peroxidase (HRP). J. Immunol Methods 111, 95–99.

    Article  PubMed  CAS  Google Scholar 

  24. Karawajew, L., Micheel, B., Behrsing, O., and Gaestel, M. (1987) Bispecific antibody-producing hybrid bybridomas selected by a fluorescence activated cell sorter. J. Immunol Methods 96, 265–270.

    Article  PubMed  CAS  Google Scholar 

  25. Kreutz, F. T., Xu, D. Z., and Suresh, M. R. (1998) A new method to generate quadromas by electrofusion and FACS sorting. Hybridoma 17, 267–273.

    Article  PubMed  CAS  Google Scholar 

  26. Gupta, S. and Suresh, M. R. (2002) Affinity chromatography and co-chromatography of bispecific monoclonal antibody immunoconjugates. J. Biochem. Biophys. Methods 51, 203–216.

    Article  PubMed  CAS  Google Scholar 

  27. Husereau, D. R. and Suresh, M. R. (2001) A general affinity method to purify peroxidase-tagged antibodies. J. Immunol. Methods 249(1-2), 33–41.

    Article  PubMed  CAS  Google Scholar 

  28. de Ropp, J. S., Mandal, P. K., and La Mar, G. N. (dy1999) Solution 1H NMR investigation of the heme cavity and substrate binding site in cyanide-inhibited horseradish peroxidase. Biochemistry 38, 1077–1086.

    Article  PubMed  Google Scholar 

  29. Kabat, E. A., Wu, T. T., Perry, H. M., Gottesman, K. S., and Foeller, C. (1991) Sequences of Proteins of Immunological Interest, 5th Ed., U.S. Department Health and Human Services, Public Health Service, National Institute of Health, Publication No. 81-3242.

    Google Scholar 

  30. Orlandi, R., Gussow, D. H., Jones, P. T., and Winter, G. (1989) Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 86, 3833–3837.

    Article  PubMed  CAS  Google Scholar 

  31. Xu, B., Kriangkum, J., Nagata, L. P., Fulton, R. E., and Suresh, M. R. (1999) A single chain Fv specific against western equine encephalitis virus. Hybridoma 18(4), 315–323.

    Article  PubMed  CAS  Google Scholar 

  32. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  33. Luo, D., Geng, M., Schultes, B., et al. (1998) Expression of a fusion protein of scFv-biotin mimetic peptide for immunoassay. J. Biotechnol. 65, 225–228.

    Article  PubMed  CAS  Google Scholar 

  34. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277, 680–685.

    Article  Google Scholar 

  35. Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Proc. Natl. Acad. Sci. USA 76, 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  36. Kurucz, I., Titus, J. A., Jost C. R., and Segal. D. M. (1995) Correct disulfide pairing and efficient refolding of detergent-solublilized single chain Fv proteins from bacterial inclusion bodies. Molecular Immunology 32(17/18), 1443–1452.

    Article  PubMed  CAS  Google Scholar 

  37. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  38. Long, M. C., Jager, S., Mah, D. C. W., et al. (2000) Construction and characterization of a novel recombinant single-chain variable fragment antibody against western equine encephalitis virus. Hybridoma 19(1), 1–13.

    Article  PubMed  CAS  Google Scholar 

  39. Rudolph, R. (1990) Renaturation of recombinant disulfide-bonded protein from &quote;inclusion bodies.&quote; In: Modern Methods in Protein and Nucleic Acid Research. Tschesche, H., ed., Walter de Druyter, Berlin, Germany, pp. 149–171.

    Google Scholar 

  40. Buchner, J. and Rudolph, R. (1991) Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Biotechnology 9(2), 157–162.

    CAS  Google Scholar 

  41. Buchne, J., Pastan, I., and Brinkmann, U. (1992) A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal. Biochem. 205(2), 263–270.

    Article  Google Scholar 

  42. Lacks, S. A. and Springhorn, S. S. (1980) Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. J. Biol. Chem. 255, 7467–7473.

    PubMed  CAS  Google Scholar 

  43. Saxena, V. P. and Wetlaufer, D. B. (1970) Formation of three-dimensional structure in proteins. I. Rapid nonenzyme reactivation of reduced lysozyme. Biochemistry 9(25), 5015–5023.

    Article  PubMed  CAS  Google Scholar 

  44. Suttnar, J., Dyr, J. E., Hamsikova, E., Novak, J., and Vonka, V. (1994) Procedure for refolding and purification of recombinant proteins from Eschrichia coli inclusion bodies using a strong anion exchanger. J. Chromatogr. B 656, 123–126.

    Article  CAS  Google Scholar 

  45. Wei, C., Tang, B., Zhang, Y., and Yang, K. (1999) Oxidative refolding of recombinant prochymosin. Biochem. J. 340, 345–351.

    Article  PubMed  CAS  Google Scholar 

  46. Verma, R., Boleti, E., and George, A. J. T. (1998) Antibody engineering: Comparison of bacterial, yeast, insect and mammalian expression system. J. Immunol. Methods 216, 165–181.

    Article  PubMed  CAS  Google Scholar 

  47. Clark, A.M. (2002) Standard protocols for the construction of Fab libraries. In: Methods in Molecular Biology, vol. 178: Antibody Phage Display: Methods and Protocols. O’Brien, P. M., and Aitken, R., eds. Humana, Totowa, NJ, pp. 39–58.

    Google Scholar 

  48. Dziegiel, M., Nielsen, L, K., Adersen, P. S., Blancher, A., Dickmeiss, E., and Engber, J.(1995) Phage display used for gene cloning of human recombinant antibody against the erythrocyte surface antigen, rhesus D. J. Immunol. Methods 182(1), 7–19.

    Article  PubMed  CAS  Google Scholar 

  49. Marks, J. D., Tristem, M., Karpas, A., and Winter, G. (1991) Oligonucleotide primers for polymerase chain reaction amplification of human immunoglobulin variable genes and design of family-specific oligonucleotide probes. Eur. J. Immunol. 21(4), 985–991.

    Article  PubMed  CAS  Google Scholar 

  50. Kettleborough, C. A., Saldanha, J., Ansell, K. H., and Bendig, M. M. (1993) Optimization of primers for cloning libraries of mouse immunoglobulin genes using the polymerase chain reaction. Eur. J. Immunol. 23(1), 206–211.

    Article  PubMed  CAS  Google Scholar 

  51. Burton, D. R. and Barbas, C. F. (1994) Human antibodies from combinatorial libraries. Adv. Immunol. 57, 191–280.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Das, D., Suresh, M.R. (2005). Producing Bispecific and Bifunctional Antibodies. In: Ludewig, B., Hoffmann, M.W. (eds) Adoptive Immunotherapy: Methods and Protocols. Methods in Molecular Medicine™, vol 109. Humana Press. https://doi.org/10.1385/1-59259-862-5:329

Download citation

  • DOI: https://doi.org/10.1385/1-59259-862-5:329

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-406-7

  • Online ISBN: 978-1-59259-862-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics