Skip to main content

Scalable Production of Embryonic Stem Cell-Derived Cells

  • Protocol
Basic Cell Culture Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 290))

Abstract

Embryonic stem (ES) cells have the ability to self-renew as well as differentiate into any cell type in the body. These traits make ES cells an attractive “raw material” for a variety of cell-based technologies. However, uncontrolled cell aggregation in ES cell differentiation culture inhibits cell proliferation and differentiation and thwarts the use of stirred suspension bioreactors. Encapsulation of ES cells in agarose microdrops prevents physical interaction between developing embryoid bodies (EBs) that, in turn, prevents EB agglomeration. This enables use of stirred suspension bioreactors that can generate large numbers of ES-derived cells under controlled conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keller, G. M. (1995) In vitro differentiation of embryonic stem cells. Curr. Opin. Cell Biol. 7, 862–869.

    Article  PubMed  CAS  Google Scholar 

  2. Boheler, K. R., Czyz, J., Tweedie, D., Yang, H. T., Anisimov, S. V., and Wobus, A. M. (2002) Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ. Res. 91, 189–201.

    Article  PubMed  CAS  Google Scholar 

  3. Soria, B., Roche, E., Berna, G., Leon-Quinto, T., Reig, J. A., and Martin, F. (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49, 157–162.

    Article  PubMed  CAS  Google Scholar 

  4. Lee, S. H., Lumelsky, N., Studer, L., Auerbach, J. M., and McKay, R. D. (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nature Biotechnol. 18, 675–679.

    Article  CAS  Google Scholar 

  5. Kaufman, D. S., Hanson, E. T., Lewis, R. L., Auerbach, R., and Thomson, J. A. (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 98, 10,716–10,721.

    Article  PubMed  CAS  Google Scholar 

  6. Keller, G., Kennedy, M., Papayannopoulou, T., and Wiles, M. V. (1993) Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol. Cell. Biol. 13, 473–486.

    PubMed  CAS  Google Scholar 

  7. Dang, S. M., Kyba, M., Perlingeiro, R., Daley, G. Q., and Zandstra, P. W. (2002) Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol. Bioeng. 78, 442–453.

    Article  PubMed  CAS  Google Scholar 

  8. Lame, L., Antos, C., Butz, S., et al. (1996) A role for cadherins in tissue formation. Development 122, 3185–3194.

    Google Scholar 

  9. Viswanathan, S., Benatar, T., Rose-John, S., Lauffenburger, D. A., and Zandstra, P. W. (2002) Ligand/receptor signaling threshold (LIST) model accounts for gp130-mediated embryonic stem cell self-renewal responses to LIF and HIL-6. Stem Cells 20, 119–138.

    Article  PubMed  CAS  Google Scholar 

  10. Zandstra, P. W. and Nagy, A. (2001) Stem cell bioengineering. Annu. Rev. Biomed. Eng. 3, 275–305.

    Article  PubMed  CAS  Google Scholar 

  11. Dang, S. M., Gerecht-Nir, S., Chen, J., Itskovitz-Eldor, J., and Zandstra, P. W. (2004) Controlled, scalable embryonic cell differentiation culture. Stem Cells 22, 275–282.

    Article  PubMed  Google Scholar 

  12. Weaver, J. C., McGrath, P., and Adams, S. (1997) Gel microdrop technology for rapid isolation of rare and high producer cells. Nature Med. 3, 583–585.

    Article  PubMed  CAS  Google Scholar 

  13. Adelman, C. A., Chattopadhyay, S., and Bieker, J. J. (2002) The BMP/BMPR/Smad pathway directs expression of the erythroid-specific EKLF and GATA1 transcription factors during embryoid body differentiation in serum-free media. Development 129, 539–549.

    PubMed  CAS  Google Scholar 

  14. Chadwick, K., Wang, L., Li, L., et al. (2003) Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 102, 906–915.

    Article  PubMed  CAS  Google Scholar 

  15. Turksen, K. (ed.) (2002) Embryonic Stem Cells: Methods and Protocols, Humana, Totowa, NJ.

    Google Scholar 

  16. Chiu, A. and Rao, M. S. (eds.) (2003) Human Embryonic Stem Cells, Humana, Totowa, NJ.

    Google Scholar 

  17. Magyar, J. P., Nemir, M., Ehler, E., Suter, N., Perriard, J. C., and Eppenberger, H. M. (2001) Mass production of embryoid bodies in microbeads. Ann. NY Acad. Sci. 944, 135–143.

    Article  PubMed  CAS  Google Scholar 

  18. Gin, H., Dupuy, B., Baquey, C., Ducassou, D., and Aubertin, J. (1987) Agarose encapsulation of islets of Langerhans: reduced toxicity in vitro. J. Microencapsul. 4, 239–242.

    Article  PubMed  CAS  Google Scholar 

  19. Tashiro, H., Iwata, H., Tanigawa, M., et al. (1998) Microencapsulation improves viability of islets from CSK miniature swine. Transplant. Proc. 30, 491.

    Article  PubMed  CAS  Google Scholar 

  20. Stevenson, W. T., Evangelista, R. A., Sugamori, M. E., and Sefton, M. V. (1988) Microencapsulation of mammalian cells in a hydroxyethyl methacrylate-methyl methacrylate copolymer: preliminary development. Biomater. Artif. Cells Artif. Organs 16, 747–769.

    PubMed  CAS  Google Scholar 

  21. Dupuy, B., Gin, H., Baquey, C., and Ducassou, D. (1988) In situ polymerization of a microencapsulating medium round living cells. J. Biomed. Mater. Res. 22, 1061–1070.

    Article  PubMed  CAS  Google Scholar 

  22. Zekorn, T., Siebers, U., Horcher, A., et al. (1992) Alginate coating of islets of Langerhans: in vitro studies on a new method for microencapsulation for immunoisolated transplantation. Acta Diabetol. 29, 41–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Dang, S.M., Zandstra, P.W. (2005). Scalable Production of Embryonic Stem Cell-Derived Cells. In: Helgason, C.D., Miller, C.L. (eds) Basic Cell Culture Protocols. Methods in Molecular Biology™, vol 290. Humana Press. https://doi.org/10.1385/1-59259-838-2:353

Download citation

  • DOI: https://doi.org/10.1385/1-59259-838-2:353

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-284-1

  • Online ISBN: 978-1-59259-838-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics