Skip to main content

Expansion and Differentiation of Immature Mouse and Human Hematopoietic Progenitors

  • Protocol
Developmental Hematopoiesis

Abstract

A prerequisite for proper investigation of self-renewal and differentiation of hematopoietic cells is the possibility to obtain large quantities of homogenous primary progenitors under defined conditions, allowing meaningful biochemical and molecular analyses. These cells should show renewal and differentiation characteristics similar to the in vivo situation. The serum-free culture systems delineated in this chapter meet these requirements, employing primary hematopoietic cells derived from murine fetal liver and human umbilical cord blood, which show physiological self-renewal responses to cytokine/hormone combinations, which in vivo are involved in stress hematopoiesis. We describe the expansion and sustained proliferation of multipotent (mouse) and erythroid (mouse and human) progenitors, responding to physiological signals. Moreover, both mouse and human erythroid progenitors can be induced to undergo synchronous terminal differentiation by addition of high levels of erythropoietin. If fetal liver cells from p53−/− mice are used, respective multipotent and erythroid cells undergo immortalization without an obvious Hayflick crisis, but otherwise retain their primary cell characteristics. Finally, both primary and immortal mouse progenitors can be subjected to genetic manipulation via retroviral constructs with high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Udupa, K. B., Crabtree, H. M., and Lipschitz, D. A. (1986) In vitro culture of proerythroblasts: characterization of proliferative response to erythropoietin and steroids. Br. J. Haematol. 62, 705–714

    Article  PubMed  CAS  Google Scholar 

  2. Meagher, R. C., Rothmann, S. A., Paik, I. K., and Paul, P. (1989) In vitro growth of rat bone marrow BFU-E. Exp. Hematol. 17, 374–378.

    PubMed  CAS  Google Scholar 

  3. Sitar, G., Garagna, S., Zuccotti, M., Falcinelli, C., Montanari, L., Alfei, A., et al. (1999) Fetal erythroblast isolation up to purity from cord blood and their culture in vitro. Cytometry 35, 337–345.

    Article  PubMed  CAS  Google Scholar 

  4. Kabat, D., Sherton, C. C., Evans, L. H., Bigley, R., and Koler, R. D. (1975) Synthesis of erythrocyte-specific proteins in cultured friend leukemia cells. Cell 5, 331–338.

    Article  PubMed  CAS  Google Scholar 

  5. Dean, A., Erard, F., Schneider, A. P., and Schechter, A. N. (1981) Induction of hemoglobin accumulation in human K562 cells by hemin is reversible. Science 212, 459–461.

    Article  PubMed  CAS  Google Scholar 

  6. Sawada, K., Krantz, S. B., Dai, C. H., Sato, N., Ieko, M., Sakurama, S., et al. (1991) Transitional change of colony stimulating factor requirements for erythroid progenitors. J. Cell Physiol. 149, 1–8.

    Article  PubMed  CAS  Google Scholar 

  7. Alter, B. P. (1994) Biology of erythropoiesis. Ann. N Y Acad. Sci. 731, 36–47.

    Article  PubMed  CAS  Google Scholar 

  8. Dolznig, H., Bartunek, P., Nasmyth, K., Mullner, E. W., and Beug, H. (1995) Terminal differentiation of normal chicken erythroid progenitors: shortening of G1 correlates with loss of D-cyclin/cdk4 expression and altered cell size control. Cell Growth Differ. 6, 1341–1352.

    PubMed  CAS  Google Scholar 

  9. Tamir, A., Howard, J., Higgins, R. R., Li, Y. J., Berger, L., Zacksenhaus, E., et al. (1999) Fli-1, an Ets-related transcription factor, regulates erythropoietin-induced erythroid proliferation and differentiation: evidence for direct transcriptional repression of the Rb gene during differentiation. Mol. Cell Biol. 19, 4452–4464.

    PubMed  CAS  Google Scholar 

  10. Kusadasi, N., van Soest, P. L., Mayen, A. E., Koevoet, J. L., and Ploemacher, R. E. (2000) Successful short-term ex vivo expansion of NOD/SCID repopulating ability and CAFC week 6 from umbilical cord blood. Leukemia 14, 1944–1953.

    Article  PubMed  CAS  Google Scholar 

  11. Tsai, S., Bartelmez, S., Sitnicka, E., and Collins, S. J. (1994) Lymphohematopoietic progenitors immortalized by a retroviral vector harboring a dominant-negative retinoic acid receptor can recapitulate lymphoid, myeloid and erythroid development. Genes Dev. 8, 2831–2844.

    Article  PubMed  CAS  Google Scholar 

  12. Schulte, C. E., Lindern Mv, M., Steinlein, P., Beug, H., and Wiedemann, L. M. (2002) MLL-ENL cooperates with SCF to transform primary avian multipotent cells. Embo J. 21, 4297–4306.

    Article  PubMed  CAS  Google Scholar 

  13. Bauer, A., Gandrillon, O., Samarut, J., and Beug, H. (2001) Nuclear receptors in hematopoietic development: cooperation with growth factor receptors in regulation of proliferation and differentiation, in Hematopoiesis: a Developmental Approach (Zon, L., ed.), Oxford University Press, Oxford, pp. 368–390.

    Google Scholar 

  14. Bauer, A., Tronche, F., Wessely, O., Kellendonk, C., Reichardt, H. M., Steinlein, P., et al. (1999) The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev. 13, 2996–3002.

    Article  PubMed  CAS  Google Scholar 

  15. von Lindern, M., Deiner, E. M., Dolznig, H., Parren-Van Amelsvoort, M., Hayman, M. J., Mullner, E. W., et al. (2001) Leukemic transformation of normal murine erythroid progenitors: v-and c-ErbB act through signaling pathways activated by the EpoR and c-Kit in stress erythropoiesis. Oncogene 20, 3651–3664.

    Article  Google Scholar 

  16. Bauer, A., Ulrich, E., Andersson, M., Beug, H., and von Lindern, M. (1997) Mechanism of transformation by v-ErbA: substitution for steroid hormone receptor function in self renewal induction. Oncogene 15, 701–715.

    Article  PubMed  CAS  Google Scholar 

  17. Dolznig, H., Boulme, F., Stangl, K., Deiner, E. M., Mikulits, W., Beug, H., et al. (2001) Establishment of normal, terminally differentiating mouse erythroid progenitors: molecular characterization by cDNA arrays. FASEB J. 15, 1442–1444.

    PubMed  CAS  Google Scholar 

  18. Dolznig, H., Habermann, B., Stangl, K., Deiner, E. M., Moriggl, R., Beug, H., et al. (2002) Apoptosis protection by the epo target bcl-x(1) allows factor-independent differentiation of primary erythroblasts. Curr. Biol. 12, 1076–1085.

    Article  PubMed  CAS  Google Scholar 

  19. Kolbus, A., Pilat, S., Husak, Z., Deiner, E. M., Stengl, G., Beug, H., et al. (2002) Raf-1 antagonizes erythroid differentiation by restraining caspase activation. J. Exp. Med. 196, 1347–1353.

    Article  PubMed  CAS  Google Scholar 

  20. Beug, H., Bartunek, P., Steinlein, P., and Hayman, M. J. (1995) Avian hematopoietic cell culture: In vitro model systems to study the oncogenic transformation of hematopoietic cells, in Oncogene Techniques (Vogt, P. K., and Verma, I. M., eds.), Vol. 254, Academic Press Inc., New York, NY, and London, UK, pp. 41–76.

    Chapter  Google Scholar 

  21. von Lindern, M., Zauner, W., Mellitzer, G., Steinlein, P., Fritsch, G., Huber, K., et al. (1999) The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood 94, 550–559.

    Google Scholar 

  22. Migliaccio, G., Di Pietro, R., di Giacomo, V., Di Baldassarre, A., Migliaccio, A. R., Maccioni, L., et al. (2002) In vitro mass production of human erythroid cells from the blood of normal donors and of thalassemic patients. Blood Cells Mol. Dis. 28, 169–180.

    Article  PubMed  Google Scholar 

  23. Wessely, O., von Lindern, M., Levitzki, A., Gazit, A., Ischenko, I., Mellitzer, G., et al. (1997) Distinct regulatory roles of the receptor tyrosine kinases c-ErbB and c-Kit in erythroid differentiation and proliferation. Cell. Growth Differ. 8, 481–493.

    PubMed  CAS  Google Scholar 

  24. Mikulits, W., Chen, D., and Mullner, E. W. (1995) Dexamethasone inducible gene expression optimised by glucocorticoid antagonists. Nucleic Acids Res. 23, 2342–2343.

    Article  PubMed  CAS  Google Scholar 

  25. Kowenz, E., Leutz, A., Doderlein, G., Graf, T., and Beug, H. (1987) ts-oncogene-transformed erythroleukemic cells: a novel test system for purifying and characterizing avian erythroid growth factors, in Modern Trends in Human Leukemia VII (Neth, R., Gallo, R. C., Greaves, M. F., and Kabisch, H., eds.), Vol. 31. Springer Verlag, Heidelberg, Germany, pp. 199–209.

    Chapter  Google Scholar 

  26. Holcik, M., Sonenberg, N., and Korneluk, R. G. (2000) Internal ribosome initiation of translation and the control of cell death. Trends Genet. 16, 469–473.

    Article  PubMed  CAS  Google Scholar 

  27. Schroeder, C., Gibson, L., Zenke, M., and Beug, H. (1992) Modulation of normal erythroid differentiation by the endogenous thyroid hormone and retinoic acid receptors: a possible target for v-erbA oncogene action. Oncogene 7, 217–227.

    PubMed  CAS  Google Scholar 

  28. Bauer, A., Mikulits, W., Lagger, G., Stengl, G., Brosch, G., and Beug, H. (1998) The thyroid hormone receptor functions as a ligand-operated developmental switch between proliferation and differentiation of erythroid progenitors. EMBO J. 17, 4291–4303.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Dolznig, H. et al. (2005). Expansion and Differentiation of Immature Mouse and Human Hematopoietic Progenitors. In: Baron, M.H. (eds) Developmental Hematopoiesis. Methods in Molecular Medicine, vol 105. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-826-9:323

Download citation

  • DOI: https://doi.org/10.1385/1-59259-826-9:323

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-296-4

  • Online ISBN: 978-1-59259-826-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics