Skip to main content

Imaging Early Macrophage Differentiation, Migration, and Behaviors in Live Zebrafish Embryos

  • Protocol
Developmental Hematopoiesis

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 105))

Abstract

Because zebrafish embryos are transparent, cell behaviors and interactions can be directly imaged noninvasely in live embryos using differential interference contrast-Nomarski light microscopy. We found that the imaging quality can be much improved by coupling differential interference contrast-Nomarski to true (analogical) color video so as to visualize the image in real time on a high-resolution colour video monitor. We explain here how to apply this approach to the in vivo imaging of embryonic macrophages, which constitute a distinct early macrophage lineage, that originates from the rostral-most lateral mesoderm -adjacent to the cardiac field, differentiate in the yolk sac, and rapidly spread in embryonic tissues, although still retaining proliferative capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, R. D., David, G. B., and Nomarski, G. (1969) The Zeiss-Nomarski differential interference equipment for transmitted-light microscopy. Z. Wiss. Mikroskopie. u. Mikroskopische Technik 69, 193–221.

    CAS  Google Scholar 

  2. Padawer, J. (1967) The Nomarski interference-contrast microscope. An experimental basis for image interpretation. J. Royal Microsc. Soc. 88, 305–349.

    Article  Google Scholar 

  3. Herbomel, P. (1999) Spinning nuclei in the brain of the zebrafish embryo. Curr. Biol. 9, R627–R628.

    Article  PubMed  CAS  Google Scholar 

  4. Herbomel, P., Thisse, B., and Thisse, C. (1999) Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126, 3735–3745.

    PubMed  CAS  Google Scholar 

  5. Herbomel, P., Thisse, B., and Thisse, C. (2001) Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 238, 274–288.

    Article  PubMed  CAS  Google Scholar 

  6. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann B., and Schilling T. F. (1995) Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310.

    Article  PubMed  CAS  Google Scholar 

  7. Davis, J. M., Clay, H., Lewis, J. L., Ghori, N., Herbomel, P., and Ramakrishnan, L. (2002) Real-time visualization of Mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17, 693–702.

    Article  PubMed  CAS  Google Scholar 

  8. Takahashi, K., Yamamura, F., and Naito, M. (1989) Differentiation, maturation, and proliferation of macrophages in the mouse yolk sac. J. Leuk. Biol. 45, 87–96.

    CAS  Google Scholar 

  9. Takahashi, K., Naito M., and Takeya, M. (1996) Development and heterogeneity of macrophages and their related cells through their differentiation pathways. Pathol. Int. 46, 473–485.

    Article  PubMed  CAS  Google Scholar 

  10. Sorokin, S. P., Hoyt, R. F., and McNelly, N. A. (1992) Macrophage development: II. Early ontogeny of macrophage populations in brain, liver, and lungs of rat embryos as revealed by a lectin marker. Anat. Rec. 232, 527–550.

    Article  PubMed  CAS  Google Scholar 

  11. Sorokin, S. P., McNelly, N. A., and Hoyt, R. F. (1992) CFU-rAM, the origin of lung macrophages, and the macrophage lineage. Am. J. Physiol. 263, L299–L307.

    PubMed  CAS  Google Scholar 

  12. Cuadros, M. A, Coltey, P., Nieto, M. C., and Martin, C. (1992) Demonstration of a phagocytic cell system belonging to the hemopoietic lineage and originating from the yolksac in the early avian embryo. Development 115, 157–168.

    PubMed  CAS  Google Scholar 

  13. Cuadros, M. A., Martin, C., Coltey, P., Almendros, A., and Navascues, J. (1993) First appearance, distribution, and origin of macrophages in the early development of the avian central nervous system. J. Compar. Neurol. 330, 113–129.

    Article  CAS  Google Scholar 

  14. Ohinata, H., Tochinai, S., and Katagiri, C. (1990) Occurence of non-lymphoid leukocytes that are not derived from blood islands in Xenopus laevis larvae. Dev. Biol. 141, 123–129.

    Article  PubMed  CAS  Google Scholar 

  15. Smith, S. J., Kotecha, S., Towers, N., Latinkic, B. V., and Mohun, T. J. (2002). XPOX2-peroxidase expression and the XLURP-1 promoter reveal the site of embryonic myeloid cell development in Xenopus. Mech. Dev. 117, 173–186.

    Article  PubMed  CAS  Google Scholar 

  16. Kurz, H. and Christ, B. (1998) Embryonic CNS macrophages and microglia do not stem from circulating, but from extravascular precursors. Glia 22, 98–102.

    Article  PubMed  CAS  Google Scholar 

  17. Lichanska, A. M., Browne, C. M., Henkel, G. W., Murphy, K. M., Ostrowski, M. C., McKercher, S. R., et al. (1999) Differentiation of the mononuclear phagocyte system during mouse embryogenesis: the role of transcription factor PU.1. Blood 94, 127–138.

    PubMed  CAS  Google Scholar 

  18. Alliot, F., Godin, I., and Pessac, B. (1999) Microglia derive from progenitors originating from the yolksac and which proliferate in the brain. Dev. Brain Res. 117, 145–152.

    Article  CAS  Google Scholar 

  19. Mizoguchi, S., Takahashi, K., Takeya, M., Naito, M., and Morioka, T. (1992) Development, differentiation, and proliferation of epidermal Langerhans cells in rat ontogeny studied by a novel monoclonal antibody against epidermal Langerhans cells, RED-1. J. Leuk. Biol. 52, 52–61.

    CAS  Google Scholar 

  20. Naito, M., Hasegawa, G., and Takahashi, K. (1997) Development, differentiation, and maturation of Kupffer cells. Microsc. Res. Technol. 39, 350–364.

    Article  CAS  Google Scholar 

  21. Pardanaud, L., Luton, D., Prigent, M., Bourcheix, L-M, Catala, M, and Dieterlen-Lièvre, F. (1996) Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122, 1363–1371.

    PubMed  CAS  Google Scholar 

  22. Allen, R. D. (1985) New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy. Ann. Rev. Biophys. Chem. 14, 265–290.

    Article  CAS  Google Scholar 

  23. Detrich, H. W. III, Kieran, M. W., Chan, F. Y., Barone, L. M., Yee, K., Rundstadler, J. A., et al. (1995) Intraembryonic haematopoietic cell migration during vertebrate development. Proc. Natl. Acad. Sci. USA 92, 10,713–10,717.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Herbomel, P., Levraud, JP. (2005). Imaging Early Macrophage Differentiation, Migration, and Behaviors in Live Zebrafish Embryos. In: Baron, M.H. (eds) Developmental Hematopoiesis. Methods in Molecular Medicine, vol 105. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-826-9:199

Download citation

  • DOI: https://doi.org/10.1385/1-59259-826-9:199

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-296-4

  • Online ISBN: 978-1-59259-826-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics