Skip to main content

Tracking and Programming Early Hematopoietic Cells in Xenopus Embryos

  • Protocol
Developmental Hematopoiesis

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 105))

  • 901 Accesses

Abstract

The fates of lineage labeled hematopoietic precursor populations in Xenopus embryos are followed by use of in situ hybridization, looking for overlap between lineage labeled cells and in situ probes specific for known cell populations or states of differentiation. By coinjection of dominant interfering constructs, it also is possible to define the environmental cues or signals required for specification and/or maintenance of the hematopoietic program at different times and locations in the early embryo. As a lineage trace, we use β-galactosidase, which is injected as in vitro synthesized ribonucleic acid (RNA) in to Xenopus embryos at early cleavage stages. Because the interfering constructs we use also are in the form of injected RNA, the use of β-galactosidase RNA as a lineage trace assures accurate determination of the cells expressing the dominant negative construct. Embryos are cultured to desired developmental stages, fixed briefly and processed for the β-galactosidase reaction. Embryos are then analyzed by whole mount in situ hybridization, embedded in wax, and sectioned. Alternatively, after the β-galactosidase reaction, embryos can be fixed long term in paraformaldehyde, mounted in wax, sectioned, and probed by in situ hybridization directly on sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakamura, O. and Kishiyama, K. (1971) Prospective fates of the blastomeres at 32 cell stage of Xenopus laevis embryos. Proc. Jpn. Acad. 47, 407–412.

    Google Scholar 

  2. Dale, L. and Slack, J. (1987) Fate map for the 32-cell stage of Xenopus laevis. Development 99, 527–551.

    PubMed  CAS  Google Scholar 

  3. Vogt, W. (1929) Gestaltungsanalyse am Amphibienkeim mit ortlicher Vitalfarburg. II. Teil gastrulation und mesodermbildung bei urodelen und anuren. Wilhelm Roux’s Arch. 120, 384–706.

    Article  Google Scholar 

  4. Keller, R. E. (1975) Vital dye mapping of the gastrula and neurula of Xenopus laevis. I Prospective areas and morphogenetic movements of the superficial layer. Dev. Biol. 42, 222–241.

    Article  PubMed  CAS  Google Scholar 

  5. Keller, R. E. (1976) Vital dye mapping of the gastrula and neurula of Xenopus laevis II. Prospective areas and morphogenetic movements of the deep layer. Dev. Biol. 51, 118–137.

    Article  PubMed  CAS  Google Scholar 

  6. Moody, S. A. (1987) Fates of the blastomeres of the 16-cell stage Xenopus embryo. Dev. Biol. 119, 560–578.

    Article  PubMed  CAS  Google Scholar 

  7. Moody, S. (1987) Fates of the blastomeres of the 32-cell stage Xenopus embryo. Dev. Biol. 122, 300–319.

    Article  PubMed  CAS  Google Scholar 

  8. Lane, M. C. and Sheets, M. D. (2002) Rethinking axial patterning in amphibians. Dev. Dyn. 225, 434–447.

    Article  PubMed  Google Scholar 

  9. Lane, M. C. and Smith, W. C. (1999) The origins of primitive blood in Xenopus: implications for axial patterning. Development 126, 423–434.

    PubMed  CAS  Google Scholar 

  10. Tracey Jr., W. D., Pepling, M. E., Horb, M. E., Thomsen, G. H., and Gergen, J. P. (1998) A Xenopus homologue of aml-1 reveals unexpected patterning mechanisms leading to the formation of embryonic blood. Development 125, 1371–1380.

    PubMed  CAS  Google Scholar 

  11. Ciau-Uitz, A., Walmsley, M., and Patient, R. (2000) Distinct origins of adult and embryonic blood in Xenopus. Cell 102, 787–796.

    Article  PubMed  CAS  Google Scholar 

  12. Kau, C. and Turpen, J. B. (1983) Dual contribution of embryonic ventral blood island and dorsal lateral plate mesoderm during ontogeny of hemopoietic cells in Xenopus laevis. J. Immunol. 131, 2262–2266.

    PubMed  CAS  Google Scholar 

  13. Maeno, M., Tochinai, S., and Katagiri, C. (1985) Differential participation of ventral and dorsolateral mesoderms in the hemopoiesis of Xenopus, as revealed in diploid-triploid or interspecific chimeras. Dev. Biol. 110, 503–508.

    Article  PubMed  CAS  Google Scholar 

  14. Maeno, M., Todate, A., and Katagiri, C. (1985) The localisation of precursor cells for larval and adult hemopoietic cells of Xenopus laevis in two regions of the embryos. Dev. Growth Diff. 27, 137–148.

    Article  Google Scholar 

  15. Baron, M. H. (2001) Induction of embryonic haematopoietic and endothelial stem/progenitor cells by hedgehog-mediated signals. Differentiation 68, 175–185.

    Article  PubMed  CAS  Google Scholar 

  16. Walmsley, M., Ciau-Uitz, A., and Patient, R. (2002) Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus. Development 129, 5683–5695.

    Article  PubMed  CAS  Google Scholar 

  17. Murray, P. D. F. (1932) The development in vitro of the blood of the early chick embryo. Proc. Royal Soc. Lond. 11, 497–521.

    Google Scholar 

  18. Keller, G. (2001) The Hemangioblast, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 329–348.

    Google Scholar 

  19. Stainier, D. Y. R., Weinstein, B. M., Detrich, H. W., Zon, L. I., and Fishman, M. C. (1995) cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121, 3141–3150.

    PubMed  CAS  Google Scholar 

  20. Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. C., and Keller, G. (1998) A common precursor for hematopoietic and endothelial cells. Development 125, 725–732.

    PubMed  CAS  Google Scholar 

  21. Nishikawa, S.-I., Nishikawa, S., Hirashima, M., Matsuyoshi, N., and Kodama, H. (1998) Progressive lineage analysis by cell sorting and culture identifies FLK+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125, 1747–1757.

    PubMed  CAS  Google Scholar 

  22. Palis, J., Robertson, S., Kennedy, M., Wall, C., and Keller, G. (1999) Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126, 5073–5084.

    PubMed  CAS  Google Scholar 

  23. Smith, W. C. and Harland, R. M. (1991) Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalising centre. Cell 67, 753–765.

    Article  PubMed  CAS  Google Scholar 

  24. Lane, M. C. and Sheets, M. D. (2002) Primitive and definitive blood share a common origin in Xenopus: A comparison of lineage techniques used to construct fate maps. Dev. Biol. 248, 52–67.

    Article  PubMed  CAS  Google Scholar 

  25. Hauptmann, G. (2001) One-, two-, and three-color whole-mount in situ hybridization to Drosophila embryos. Methods 23, 359–372.

    Article  PubMed  CAS  Google Scholar 

  26. Jowett, T. (2001) Double in situ Hybridisation Techniques in Zebrafish. Methods 23, 345–358.

    Article  PubMed  CAS  Google Scholar 

  27. Beumer, T. L., Veenstra, G. J. C., Hage, W. J., and Destree, O. H. J. (1995) Whole-mount immunohistochemistry on Xenopus embryos using far red fluorescent dyes. Trends Genet. 11, 9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Walmsley, M., Ciau-Uitz, A., Patient, R. (2005). Tracking and Programming Early Hematopoietic Cells in Xenopus Embryos. In: Baron, M.H. (eds) Developmental Hematopoiesis. Methods in Molecular Medicine, vol 105. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-826-9:123

Download citation

  • DOI: https://doi.org/10.1385/1-59259-826-9:123

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-296-4

  • Online ISBN: 978-1-59259-826-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics