Skip to main content

Immunoglobulin Class Switching

In Vitro Induction and Analysis

  • Protocol
B Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 271))

Abstract

During an immune response, B lymphocytes can switch expression of immunoglobulin (Ig) class (isotype) from IgM to IgG, IgE, or IgA. This Ig class switch is based on a deoxyribonucleic acid (DNA) recombination event that results in an exchange of the gene segments coding for the constant region of the Ig heavy chain, although the Ig heavy chain variable region is retained. This process changes the effector functions of the corresponding antibody (Ab). Much of our current understanding of the molecular mechanisms of class switch recombination is based on the analysis of B cells induced to switch class of Ig in vitro. In vitro, murine and human naive B cells can be activated with bacterial lipopolysaccharides, anti-CD40 or CD40L, to undergo class switch recombination. Cytokine signals can direct class switch recombination to distinct classes; for example, interleukin-4 will target murine IgG1 and IgE, and human IgG4 and IgE. Here we describe the technologies for the isolation of B lymphocytes, their activation to class switching, and the analysis of Ig class switching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nossal, G. J. V., Szenberg, A., Ada, G. L., and Austin, C. M. (1964) Single cell studies on 19S antibody production. J. Exp. Med. 119, 485–502.

    Article  PubMed  CAS  Google Scholar 

  2. Honjo, T. and Kataoka, T. (1978) Organization of immunoglobulin heavy chain genes and allelic deletion model. Proc. Natl. Acad. Sci. USA 75, 2140–2144.

    Article  PubMed  CAS  Google Scholar 

  3. Kataoka, T., Kawakami, T., Takahashi, N., and Honjo, T. (1980) Rearrangement of immunoglobulin γ1-chain gene and mechanism for heavy-chain class switch. Proc. Natl. Acad. Sci. USA 77, 919–923.

    Article  PubMed  CAS  Google Scholar 

  4. Rabbitts, T. H., Forster, A., Dunnick, W., and Bentley, D. L. (1980) The role of gene deletion in the immunoglobulin heavy chain switch. Nature 283, 351–356.

    Article  PubMed  CAS  Google Scholar 

  5. Kataoka, T., Miyata, T., and Honjo, T. (1981) Repetitive sequences in class switch recombination regions of immunoglobulin heavy chain genes. Cell 23, 357–368.

    Article  PubMed  CAS  Google Scholar 

  6. Radbruch, A., Burger, C., Klein, S., and Müller, W. (1986) Control of immunoglobulin class switch recombination. Immunol. Rev. 89, 69–84.

    Article  PubMed  CAS  Google Scholar 

  7. Sablitzky, F., Radbruch, A., and Rajewsky, K. (1982) Spontaneous immunoglobulin class switching in myeloma and hybridoma cell lines differs from physiological class switching. Immunol. Rev. 67, 59–72.

    Article  PubMed  CAS  Google Scholar 

  8. Nakamura, M., Kondo, S., Sugai, M., Nazarea, M., Imamura, S., and Honjo, T. (1996) High frequency class switching of an IgM+ B lymphoma clone CH12F3 to IgA+ cells. Int. Immunol. 8, 193–201.

    Article  PubMed  CAS  Google Scholar 

  9. Kearney, J. F., Cooper, M. D., and Lawton, A. R. (1976) B cell differentiation induced by lipopolysaccharide IV: development of immunoglobulin class restriction in precursors of IgG synthesizing cells. J. Immunol. 117, 67–72.

    Google Scholar 

  10. Anderson, J., Coutinho, A., Lernhardt, W., and Melchers, F. (1977) Clonal growth and maturation to immunoglobulin secretion in vitro of every growth-inducible B lymphocyte. Cell 10, 27–36.

    Article  Google Scholar 

  11. Esser, C. and Radbruch, A. (1990) Immunoglobulin class switching: molecular and cellular analysis. Annu. Rev. Immunol. 8, 717–735.

    Article  PubMed  CAS  Google Scholar 

  12. Stavnezer, J. and Sirlin, S. (1986) Specificity of immunoglobulin heavy chain switch correlates with activity of germline heavy chain genes prior to switching. EMBO J. 5, 95–102.

    Google Scholar 

  13. Yancopoulos, G. D., DePinho, R. A., Zimmermann, K. A., Lutzker, S. G., Rosenberg, N., and Alt, F. W. (1986) Secondary genomic rearrangement events in pre-B cells: VHDJH replacement by a LINE-1 sequence and directed class switching. EMBO J. 5, 3259–3266.

    PubMed  CAS  Google Scholar 

  14. Radbruch, A., Muller, W., and Rajewsky, K. Class switch recombination is IgG1 specific on active and inactive IgH loci of IgG1-secreting B-cell blasts. Proc. Natl. Acad. Sci. USA 83, 3954–3957.

    Google Scholar 

  15. Jung, S., Rajewsky, K., and Radbruch, A. (1993) Shutdown of class switch recombination by deletion of a switch region control element. Science 259, 984–987.

    Article  PubMed  CAS  Google Scholar 

  16. Hein, K., Lorenz, M. G., Siebenkotten, G., Petry, K., Christine, R., and Radbruch, A. (1998) Processing of switch transcripts is required for targeting of antibody class switch recombination. J. Exp. Med. 188, 2369–2374.

    Article  PubMed  CAS  Google Scholar 

  17. Muramatsu, M., Sankaranand, V. S., Anant, S., et al. (1999) Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18,470–18,476.

    Article  PubMed  CAS  Google Scholar 

  18. Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y., and Honjo, T. (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563.

    Article  PubMed  CAS  Google Scholar 

  19. Petersen-Mahrt, S. K., Harris, R. S., and Neuberger, M. S. (2002) AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103.

    Article  PubMed  CAS  Google Scholar 

  20. Petersen, S., Casellas, R., Reina-San-Martin, B., et al. (2001) AID is required to initiate Nbs1/gamma-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–665.

    Article  PubMed  CAS  Google Scholar 

  21. Rolink, A., Melchers, F., and Andersson, J. (1996) The SCID but not the RAG-2 gene product is required for Sµ-S heavy chain class switching. Immunity 5, 319–330.

    Article  PubMed  CAS  Google Scholar 

  22. Manis, J. P., Dudley, D., Kaylor, L., and Alt, F. W. (2002) IgH class switch recombination to IgG1 in DNA-PKcs-deficient B cells. Immunity 16, 607–617.

    Article  PubMed  CAS  Google Scholar 

  23. Bosma, G. C., Kim, J., Urich, T., et al. (2002) DNA-dependent protein kinase activity is not required for immunoglobulin class switching. J. Exp. Med. 196, 1483–1495.

    Article  PubMed  CAS  Google Scholar 

  24. von Schwedler, U., Jack, H. M., and Wabl, M. (1990) Circular DNA is a product of the immunoglobulin class switch rearrangement. Nature 345, 452–456.

    Article  Google Scholar 

  25. Chu, C. C., Max, E. E, and Paul, W. E. (1993) DNA rearrangement can account for in vitro switching to IgG1. J. Exp. Med. 178, 1381–1390.

    Article  PubMed  CAS  Google Scholar 

  26. Kühn, R., Rajewsky, K., and Müller, W. (1991) Generation and analysis of interleukin-4 deficient mice. Science 254, 707–710.

    Article  PubMed  Google Scholar 

  27. Sedgwick, J. D. and Holt, P.G. (1983) A solid-phase immunoenzymatic technique for the enumeration of specific antibody-secreting cells. J. Immunol. Methods 57, 301–309.

    Article  PubMed  CAS  Google Scholar 

  28. Sedgwick, J. D. and Holt, P. G. (1986) The ELISA-plaque assay for the detection and enumeration of antibody-secreting cells. J. Immunol. Methods 87, 37–44.

    Article  PubMed  CAS  Google Scholar 

  29. Manz, R., Assenmacher, M., Pfluger, E., Miltenyi, S., and Radbruch, A. (1995) Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc. Natl. Acad. Sci. USA 92, 1921–1925.

    Article  PubMed  CAS  Google Scholar 

  30. Manz, R. A., Lohning, M., Cassese, G., Thiel, A., and Radbruch, A. (1998) Survival of long-lived plasma cells is independent of antigen. Int. Immunol. 10, 101,703–101,711.

    Article  Google Scholar 

  31. Hodgkin, P. D., Lee, J. H., and Lyons A. B. (1996) B cell differentiation and isotype switching is related to division cycle number. J. Exp. Med. 184, 277–281.

    Article  PubMed  CAS  Google Scholar 

  32. Unkeless, J. C. (1979) Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J. Exp. Med. 150, 580–596.

    Article  PubMed  CAS  Google Scholar 

  33. Lyons, A. B. and Parish, C. R. (1994) Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171, 131–137.

    Article  PubMed  CAS  Google Scholar 

  34. Schmitz, J., Assenmacher, M., and Radbruch, A. (1993) Regulation of T helper cell cytokine expression: functional dichotomy of antigen-presenting cells. Eur. J. Immunol. 23, 191–199.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Kracker, S., Radbruch, A. (2004). Immunoglobulin Class Switching. In: Gu, H., Rajewsky, K. (eds) B Cell Protocols. Methods in Molecular Biology, vol 271. Humana Press. https://doi.org/10.1385/1-59259-796-3:149

Download citation

  • DOI: https://doi.org/10.1385/1-59259-796-3:149

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-347-3

  • Online ISBN: 978-1-59259-796-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics