Skip to main content

High-Throughput Expression in Microplate Format in Saccharomyces cerevisiae

  • Protocol
Recombinant Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 267))

  • 3454 Accesses

Abstract

We have developed a high-throughput technology that allows parallel expression, purification, and analysis of large numbers of cloned cDNAs in the yeast Saccharomyces cerevisiae. The technology is based on a vector for intracellular protein expression under control of the inducible CUP1 promoter, where the gene products are fused to specific peptide sequences. These N-terminal and C-terminal epitope tags allow the immunological identification and purification of the gene products independent of the protein produced. By introducing the method of recombinational cloning we avoid time-consuming re-cloning steps and enable the easy switching between different expression vectors and host systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  PubMed  CAS  Google Scholar 

  2. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001) The sequence of the human genome. Science 291, 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  3. Nilsson, J., Stahl, S., Lundeberg, J., Uhlen, M., and Nygren, P. A. (1997) Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr. Purif. 11, 1–16.

    Article  PubMed  CAS  Google Scholar 

  4. Holz, C., Hesse, O., Bolotina, N., Stahl, U., and Lang, C. (2002) A micro-scale process for high-throughput expression of cDNAs in the yeast Saccharomyces cerevisiae. Protein Expr. Purif. 25, 372–378.

    Article  PubMed  CAS  Google Scholar 

  5. Lang, C. and Looman, A. C. (1995) Efficient expression and secretion of Aspergillus niger RH5344 polygalacturonase in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 44, 147–156.

    Article  PubMed  CAS  Google Scholar 

  6. Etcheverry, T. (1990) Induced expression using yeast copper metallothionein promoter. Methods Enzymol. 185, 319–329.

    Article  PubMed  CAS  Google Scholar 

  7. Voss, S. and Skerra, A. (1997) Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng. 10, 975–982.

    Article  PubMed  CAS  Google Scholar 

  8. Porath, J., Carlsson, J., Olsson, I., and Belfrage, G. (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258, 598–599.

    Article  PubMed  CAS  Google Scholar 

  9. Sambrook, J., Fritsch, E. F., and Maniatis, T., (1989) Molecular Cloning, A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  10. Holz, C., Prinz, B., Bolotina, N., Sievert, V., Büssow, K., Simon, B., et al. (2003) Establishing the yeast Saccharomyces cerevisiae as a system for expression of human proteins on a proteome-scale. J. Struct. Funct. Genomics 4, 97–108.

    Article  PubMed  CAS  Google Scholar 

  11. Gietz, D., St Jean, A., Woods, R. A., and Schiestl, R. H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425.

    Google Scholar 

  12. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  13. Erhart, E. and Hollenberg, C. P. (1983) The presence of a defective LEU2 gene on 2 mu DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J. Bacteriol. 156, 625–635.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Holz, C., Lang, C. (2004). High-Throughput Expression in Microplate Format in Saccharomyces cerevisiae . In: Balbás, P., Lorence, A. (eds) Recombinant Gene Expression. Methods in Molecular Biology, vol 267. Humana Press. https://doi.org/10.1385/1-59259-774-2:267

Download citation

  • DOI: https://doi.org/10.1385/1-59259-774-2:267

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-262-9

  • Online ISBN: 978-1-59259-774-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics