Skip to main content

Folding-Promoting Agents in Recombinant Protein Production

  • Protocol
Recombinant Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 267))

Abstract

Recombinant protein production has become an essential tool for providing the necessary amounts of a protein of interest to either research or therapy. The target proteins are not in every case soluble and/or correctly folded. That is why different production parameters, such as host, cultivation conditions, and co-expression of chaperones and foldases, are applied in order to gain functional recombinant proteins. Furthermore, the addition of folding-promoting agents during the cultivation is increasingly performed. The impact of all these strategies cannot be predicted and must be analyzed and optimized for the corresponding target protein. In this chapter recent cases of using folding-promoting agents in recombinant protein production are reviewed and discussed with respect to their in vivo applicability. Their effects in the cells are mostly not known in detail but at least partially comparable with the in vitro mode of action. The corresponding in vitro effects are also included in the chapter in order to facilitate a decision about their potential in vivo use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baneyx, F. (1999) Recombinant protein expression in E. coli. Curr. Opin. Biotechnol. 10, 411–421.

    Article  PubMed  CAS  Google Scholar 

  2. Kopetzki, E., Schumacher, G., and Buckel, P. (1989) Control of formation of active soluble or inactive insoluble baker’s yeast alpha-glucosidase PI in Escherichia coli by induction and growth conditions. Mol. Gen. Genet. 216, 149–155.

    Article  PubMed  CAS  Google Scholar 

  3. Georgiou, G. and Valax, P. (1996) Expression of correctly folded proteins in E. coli. Curr. Opin. Biotechnol. 7, 190–197.

    Article  PubMed  CAS  Google Scholar 

  4. Bourot, S., Sire, O., Trautwetter, A., Touze, T., Wu, L. F., Blanco, C., et al. (2000) Glycine betaine-assisted protein folding in a lysA mutant of Escherichia coli. J. Biol. Chem. 275, 1050–1056.

    Article  PubMed  CAS  Google Scholar 

  5. Schaeffner, J., Winter, J., Rudolph, R., and Schwarz, E. (2001) Cosecretion of chaperones and low-molecular-size medium additives increases the yield of recombinant disulfide-bridged proteins. Appl. Environ. Microbiol. 67, 3994–4000.

    Article  Google Scholar 

  6. Bao, Y. P., Cook, L. J., O’Donovan, D., Uyama, E., and Rubinsztein, D. C. (2002) Mammalian, yeast, bacterial, and chemical chaperones reduce aggregate formation and death in a cell model of oculopharyngeal muscular dystrophy. Biol. Chem. 277, 12263–12269.

    Article  CAS  Google Scholar 

  7. Tatzelt, J., Prusiner, S. B., and Welch, W. J. (1996) Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J. 15, 6363–6373.

    PubMed  CAS  Google Scholar 

  8. Singer, M. A. and Lindquist, S. (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell. 1, 639–648.

    Article  PubMed  CAS  Google Scholar 

  9. Rosenbusch, J. P. (1990) Structural and functional properties of porin channels in E. coli outer membranes. Experientia. 46, 167–173.

    PubMed  CAS  Google Scholar 

  10. Ostermeier, M. and Georgiou, G. (1994) The folding of bovine pancreatic trypsin inhibitor in the Escherichia coli periplasm. J. Biol. Chem. 269, 21072–21077.

    PubMed  CAS  Google Scholar 

  11. Brass, J. M., Higgins, C. F., Foley M, Rugman, P. A., Birmingham, J., and Garland, P. B. (1986) Lateral diffusion of proteins in the periplasm of Escherichia coli. J. Bacteriol. 165, 787–795.

    PubMed  CAS  Google Scholar 

  12. Van Wielink, J. E. and Duine, J. A. (1990) How big is the periplasmic space? Trends Biochem. Sci. 15, 136–137.

    Article  PubMed  Google Scholar 

  13. Wunderlich, M. and Glockshuber, R. (1993) In vivo control of redox potential during protein folding catalyzed by bacterial protein disulfide-isomerase (DsbA). J. Biol. Chem. 268, 24547–24550.

    PubMed  CAS  Google Scholar 

  14. Diamant, S., Eliahu, N., Rosenthal, D., and Goloubinoff, P. (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Biol. Chem. 276, 39586–39591.

    Article  PubMed  CAS  Google Scholar 

  15. Caldas, T., Demont-Caulet, N., Ghazi, A., and Richarme, G. (1999) Thermoprotection by glycine betaine and choline. Microbiology. 145, 2543–2548.

    PubMed  CAS  Google Scholar 

  16. Kempf, B. and Bremer, E. (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 170, 319–330.

    Article  PubMed  CAS  Google Scholar 

  17. Gill, R. T., DeLisa, M. P., Valdes, J. J., and Bentley, W. E. (2001) Genomic analysis of high-cell-density recombinant Escherichia coli fermentation and “cell conditioning” for improved recombinant protein yield. Biotechnol. Bioeng. 72, 85–95.

    Article  PubMed  CAS  Google Scholar 

  18. Bianchi, A. A. and Baneyx, F. (1999) Hyperosmotic shock induces the sigma32 and sigmaE stress regulons of Escherichia coli. Mol. Microbiol. 34, 1029–1038.

    Article  PubMed  CAS  Google Scholar 

  19. Neuhaus-Steinmetz, U. and Rensing, L. (1997) Heat shock protein induction by certain chemical stressors is correlated with their cytotoxicity, lipophilicity and protein-denaturing capacity. Toxicology. 123, 185–195.

    Article  PubMed  CAS  Google Scholar 

  20. Salotra, P., Singh, D. K., Seal, K. P., Krishna, N., Jaffe, H., and Bhatnagar, R. (1995) Expression of DnaK and GroEL homologs in Leuconostoc mesenteroides in response to heat shock, cold shock or chemical stress. FEMS Microbiol. Lett. 131, 57–62.

    Article  PubMed  CAS  Google Scholar 

  21. Jaenicke, R. (1998) Protein self-organization in vitro and in vivo: partitioning between physical biochemistry and cell biology. Biol. Chem. 379, 237–243.

    Article  PubMed  CAS  Google Scholar 

  22. Moore, J. T., Uppal, A., Maley, F., and Maley, G. F. (1993) Overcoming inclusion body formation in a high-level expression system. Protein Expr. Purif. 4, 160–163.

    Article  PubMed  CAS  Google Scholar 

  23. Kurokawa, Y., Yanagi, H., and Yura, T. (2000) Overexpression of protein disulfide isomerase DsbC stabilizes multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli. Appl. Environ. Microbiol. 66, 3960–3965.

    Article  PubMed  CAS  Google Scholar 

  24. Winter, J., Neubauer, P., Glockshuber, R., and Rudolph, R. (2000) Increased production of human proinsulin in the periplasmic space of Escherichia coli by fusion to DsbA. J. Biotechnol. 84, 175–185.

    Article  CAS  Google Scholar 

  25. Wei, Y., Lee, J. M., Richmond, C., Blattner, F. R., Rafalski, J. A., and LaRossa, R. A. (2001) High-density microarray-mediated gene expression profiling of Escherichia coli. J. Bacteriol. 183, 545–556.

    Article  PubMed  CAS  Google Scholar 

  26. Blackwell, J. R. and Horgan, R. (1991) A novel strategy for production of a highly expressed recombinant protein in an active form. FEBS Lett. 295, 10–12.

    Article  PubMed  CAS  Google Scholar 

  27. Muramatsu, R., Negishi, T., Mimoto, T., Miura, A., Misawa, S., and Hayashi, H. (2002) Existence of beta-methylnorleucine in recombinant hirudin produced by Escherichia coli. J. Biotechnol. 93, 131–142.

    Article  PubMed  CAS  Google Scholar 

  28. Ingram, L. O., Dickens, B. F., and Buttke, T. M. (1980) Reversible effects of ethanol on E. coli. Adv. Exp. Med. Biol. 126, 299–337.

    PubMed  CAS  Google Scholar 

  29. Ingram, L. O. (1981) Mechanism of lysis of Escherichia coli by ethanol and other chaotropic agents. J. Bacteriol. 146, 331–336.

    PubMed  CAS  Google Scholar 

  30. Dwyer, D. S. (1999) Molecular simulation of the effects of alcohols on peptide structure. Biopolymers. 49, 635–645.

    Article  PubMed  CAS  Google Scholar 

  31. Barteri, M., Gaudiano, M. C., Mei, G., and Rosato, N. (1998) New stable folding of betalactoglobulin induced by 2-propanol. Biochim. Biophys. Acta. 1383, 317–326.

    Article  PubMed  CAS  Google Scholar 

  32. Wang, A. and Bolen, D. W. (1997) A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry 36, 9101–9108.

    Article  PubMed  CAS  Google Scholar 

  33. Rariy, R. V. and Klibanov, A. M. (1999) Protein refolding in predominantly organic media markedly enhanced by common salts. Biotechnol. Bioeng. 62, 704–710.

    Article  PubMed  CAS  Google Scholar 

  34. Kuivila, R. (2002) University of Oulu (Finland), personal communication.

    Google Scholar 

  35. Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D., and Somero, G. N. (1982) Living with water stress: evolution of osmolyte systems. Science. 217, 1214–1222.

    Article  PubMed  CAS  Google Scholar 

  36. Ratnaparkhi, G. S. and Varadarajan, R. (2001) Osmolytes stabilize ribonuclease S by stabilizing its fragments S protein and S peptide to compact folding-competent states. J. Biol. Chem. 276, 28789–28798.

    Article  PubMed  CAS  Google Scholar 

  37. Chow, M. K., Devlin, G. L., and Bottomley, S. P. (2001) Osmolytes as modulators of conformational changes in serpins. Biol. Chem. 382, 1593–1599.

    Article  PubMed  CAS  Google Scholar 

  38. Barth, S., Huhn, M., Matthey, B., Klimka, A., Galinski, E. A., and Engert, A. (2000) Compatible-solute-supported periplasmic expression of functional recombinant proteins under stress conditions. Appl. Environ. Microbiol. 66, 1572–1579.

    Article  PubMed  CAS  Google Scholar 

  39. Ou, W. B., Park, Y. D., and Zhou, H. M. (2002) Effect of osmolytes as folding aids on creatine kinase refolding pathway. Int. J. Biochem. Cell. Biol. 34, 136–147.

    Article  PubMed  CAS  Google Scholar 

  40. Meng, F., Park, Y., and Zhou, H. (2001) Role of proline, glycerol, and heparin as protein folding aids during refolding of rabbit muscle creatine kinase. Int. J. Biochem. Cell. Biol. 33, 701–709.

    Article  PubMed  CAS  Google Scholar 

  41. Kumar, T. K., Samuel, D., Jayaraman, G., Srimathi, T., and Yu, C. (1998) The role of proline in the prevention of aggregation during protein folding in vitro. Biochem. Mol. Biol. Int. 46, 509–517.

    PubMed  CAS  Google Scholar 

  42. Samuel, D., Kumar, T. K., Jayaraman, G., Yang, P. W., and Yu, C. (1997) Proline is a protein solubilizing solute. Biochem. Mol. Biol. Int. 41, 235–242.

    PubMed  CAS  Google Scholar 

  43. Samuel, D., Kumar, T. K., Ganesh, G., Jayaraman, G., Yang, P. W., Chang, M. M., et al. Proline inhibits aggregation during protein refolding. Protein. Sci. 9, 344–352.

    Google Scholar 

  44. Wang, A. and Bolen, D. W. (1996) Effect of proline on lactate dehydrogenase activity: testing the generality and scope of the compatibility paradigm. Biophys. J. 71, 2117–2222.

    Article  PubMed  CAS  Google Scholar 

  45. Kita, Y. and Arakawa, T. (2002) Salts and glycine increase reversibility and decrease aggregation during thermal unfolding of ribonuclease-A. Biosci. Biotechnol. Biochem. 66, 880–882.

    Article  PubMed  CAS  Google Scholar 

  46. Kaderbhai, N., Karim, A., Hankey, W., Jenkins, G., Venning, J., and Kaderbhai, M. A. (1997) Glycine-induced extracellular secretion of a recombinant cytochrome expressed in Escherichia coli. Biotechnol. Appl. Biochem. 25, 53–61.

    PubMed  CAS  Google Scholar 

  47. Buchner, J., Pastan, I., and Brinkmann, U. (1992) A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal. Biochem. 205, 263–270.

    Article  PubMed  CAS  Google Scholar 

  48. Kim., T. K., Chung, J. Y., Lee, G. M., and Park, S. K. (2001) Arginine-enriched medium composition used for mass-producing recombinant protein in animal cell culture. Patent WO0144442.

    Google Scholar 

  49. Georgiou, G., Valax, P., Ostermeier, M., and Horowitz, P. M. (1994) Folding and aggregation of TEM beta-lactamase: analogies with the formation of inclusion bodies in Escherichia coli. Protein. Sci. 3, 1953–1960.

    Article  PubMed  CAS  Google Scholar 

  50. Bowden, G. A. and Georgiou, G. (1990) Folding and aggregation of beta-lactamase in the periplasmic space of Escherichia coli. J. Biol. Chem. 265, 16760–16766.

    PubMed  CAS  Google Scholar 

  51. Wang, A., Robertson, A. D., and Bolen, D. W. (1995) Effects of a naturally occurring compatible osmolyte on the internal dynamics of ribonuclease A. Biochemistry 34, 15096–15104.

    Article  PubMed  CAS  Google Scholar 

  52. Sola-Penna, M., Ferreira-Pereira, A., Lemos, A. P., and Meyer-Fernandes, J. R. (1997) Carbohydrate protection of enzyme structure and function against guanidinium chloride treatment depends on the nature of carbohydrate and enzyme. Eur. J. Biochem. 248, 24–29.

    Article  PubMed  CAS  Google Scholar 

  53. Frye, K. J. and Royer, C. A. (1997) The kinetic basis for the stabilization of staphylococcal nuclease by xylose. Protein. Sci. 6, 789–793.

    Article  PubMed  CAS  Google Scholar 

  54. Leandro, P., Lechner, M. C., Tavares de Almeida, I., and Konecki, D. (2001) Glycerol increases the yield and activity of human phenylalanine hydroxylase mutant enzymes produced in a prokaryotic expression system. Mol. Genet. Metab. 73, 173–178.

    Google Scholar 

  55. Figler, R. A., Omote, H., Nakamoto, R. K., and Al-Shawi, M. K. (2000) Use of chemical chaperones in the yeast Saccharomyces cerevisiae to enhance heterologous membrane protein expression: high-yield expression and purification of human P-glycoprotein. Arch. Biochem. Biophys. 376, 34–46.

    Article  PubMed  CAS  Google Scholar 

  56. Ohnishi, T., Ohnishi, K., Wang, X., Takahashi, A., and Okaichi, K. (1999) Restoration of mutant TP53 to normal TP53 function by glycerol as a chemical chaperone. Radiat. Res. 151, 498–500.

    Article  PubMed  CAS  Google Scholar 

  57. Ghumman, B., Bertram, E. M., and Watts, T. H. (1998) Chemical chaperones enhance superantigen and conventional antigen presentation by HLA-DM-deficient as well as HLA-DM-sufficient antigen-presenting cells and enhance IgG2a production in vivo. J. Immunol. 161, 3262–3270.

    PubMed  CAS  Google Scholar 

  58. Bai, C., Biwersi, J., Verkman, A. S., and Matthay, M. A. (1998) A mouse model to test the in vivo efficacy of chemical chaperones. J. Pharmacol. Toxicol. Methods 40, 39–45.

    Article  PubMed  CAS  Google Scholar 

  59. De Sanctis, G., Maranesi, A., Ferri, T., Poscia, A., Ascoli, F., and Santucci, R. (1996) Influence of glycerol on the structure and redox properties of horse heart cytochrome C. A circular dichroism and electrochemical study. J. Protein. Chem. 15, 599–606.

    Article  PubMed  Google Scholar 

  60. Zhi, W., Landry, S. J., Gierasch, L. M., and Srere, P. A. (1992) Renaturation of citrate synthase: influence of denaturant and folding assistants. Protein. Sci. 1, 522–529.

    Article  PubMed  CAS  Google Scholar 

  61. Saunders, A. J., Davis-Searles, P. R., Allen, D. L., Pielak, G. J., and Erie, D. A. (2000) Osmolyte-induced changes in protein conformational equilibria. Biopolymers. 53, 293–307.

    Article  PubMed  CAS  Google Scholar 

  62. Voziyan, P. A. and Fisher, M. T. (2002) Polyols induce ATP-independent folding of GroEL-bound bacterial glutamine synthetase. Arch. Biochem. Biophys. 397, 293–297.

    Article  PubMed  CAS  Google Scholar 

  63. Taylor, L. S., York, P., Williams, A. C., Edwards, H. G., Mehta, V., Jackson, G. S., et al. (1995) Sucrose reduces the efficiency of protein denaturation by a chaotropic agent. Biochim. Biophys. Acta. 1253, 39–46.

    Article  PubMed  Google Scholar 

  64. Majumder, A., Basak, S., Raha, T., Chowdhury, S. P., Chattopadhyay, D., and Roy, S. (2001) Effect of osmolytes and chaperone-like action of P-protein on folding of nucleocapsid protein of Chandipura virus. J. Biol. Chem. 276, 30948–30955.

    Article  PubMed  CAS  Google Scholar 

  65. Baskakov, I., Wang, A., and Bolen, D. W. (1998) Trimethylamine-N-oxide counteracts urea effects on rabbit muscle lactate dehydrogenase function: a test of the counteraction hypothesis. Biophys. J. 74, 2666–2673.

    Article  PubMed  CAS  Google Scholar 

  66. Song, J. L. and Chuang, D. T. (2001) Natural osmolyte trimethylamine N-oxide corrects assembly defects of mutant branched-chain alpha-ketoacid decarboxylase in maple syrup urine disease. J. Biol. Chem. 276, 40241–40246.

    PubMed  CAS  Google Scholar 

  67. Samuelsson, E., Jonasson, P., Viklund, F., Nilsson, B., and Uhlen, M. (1996) Affinity-assisted in vivo folding of a secreted human peptide hormone in Escherichia coli. Nat. Biotechnol. 14, 751–755.

    Article  PubMed  CAS  Google Scholar 

  68. Hwang, C., Sinskey, A. J., and Lodish, H. F. (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257, 1496–1502.

    Article  PubMed  CAS  Google Scholar 

  69. Bardwell, J. C. (1994) Building bridges: disulphide bond formation in the cell. Mol. Microbiol. 14, 199–205.

    Article  PubMed  CAS  Google Scholar 

  70. Wittung-Stafshede, P. (2002) Role of cofactors in protein folding. Acc. Chem. Res. 35, 201–208.

    Article  PubMed  CAS  Google Scholar 

  71. Zou, J. and Sugimoto, N. (2000) Complexation of peptide with Cu2+ responsible to inducing and enhancing the formation of alpha-helix conformation. Biometals 13, 349–359.

    Article  PubMed  CAS  Google Scholar 

  72. Beck, R. and Burtscher, H. (1994) Expression of human placental alkaline phosphatase in Escherichia coli. Protein. Expr. Purif. 5, 192–197.

    Article  PubMed  CAS  Google Scholar 

  73. Baneyx, F., Ayling, A., Palumbo, T., Thomas, D., and Georgiou, G. (1991) Optimization of growth conditions for the production of proteolytically-sensitive proteins in the periplasmic space of Escherichia coli. Appl. Microbiol. Biotechnol. 36, 14–20.

    Article  PubMed  CAS  Google Scholar 

  74. Machida, S., Ogawa, S., Xiaohua, S., Takaha, T., Fujii, K., and Hayashi, K. (2000) Cycloamylose as an efficient artificial chaperone for protein refolding. FEBS Lett. 486, 131–135.

    Article  PubMed  CAS  Google Scholar 

  75. Dong, X. Y., Shi, J. H., and Sun, Y. (2002) Cooperative effect of artificial chaperones and guanidinium chloride on lysozyme renaturation at high concentrations. Biotechnol. Prog. 18, 663–665.

    Article  PubMed  CAS  Google Scholar 

  76. Woycechowsky, K. J., Wittrup, K. D., and Raines, R. T. (1999) A small-molecule catalyst of protein folding in vitro and in vivo. Chem. Biol. 6, 871–879.

    Article  PubMed  CAS  Google Scholar 

  77. Winter, J., Lilie, H., and Rudolph, R. (2002) Recombinant expression and in vitro folding of proinsulin are stimulated by the synthetic dithiol Vectrase-P. FEMS Microbiol. Lett. 213, 225–230.

    Article  PubMed  CAS  Google Scholar 

  78. Schwarz, E., Rudolph, R., Ambrosius, D., and Schaeffner, J. (2001) Process for the production of naturally folded and secreted proteins by co-secretion of molecular chaperones. Patent EP1077262

    Google Scholar 

  79. Schroeckh, V., Hortschansky, P., Fricke, S., Luckenbach, G. A., and Riesenberg, D. (2000) Expression of soluble, recombinant alphav-beta3 integrin fragments in Escherichia coli. Microbiol. Res. 155, 165–177.

    PubMed  CAS  Google Scholar 

  80. Glockshuber, R., Skerra, A., Rudolph, R., and Wunderlich, M. (1992) Improvement of the secretion yield of proteins with a disulfide bridge. Patent EP0510658.

    Google Scholar 

  81. Thomas, J. G. and Baneyx, F. (1997) Divergent effects of chaperone overexpression and ethanol supplementation on inclusion body formation in recombinant Escherichia coli. Protein Expr. Purif. 11, 289–296.

    Article  PubMed  CAS  Google Scholar 

  82. Gustafson, C. and Tagesson, C. (1985) Influence of organic solvent mixtures on biological membranes. Br. J. Ind. Med. 42, 591–595.

    PubMed  CAS  Google Scholar 

  83. Hartl, F. U. and Hayer-Hartl, M. (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858.

    Article  PubMed  CAS  Google Scholar 

  84. Schlieker, C., Bukau, B., and Mogk, A. (2002) Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. J. Biotechnol. 96, 13–21.

    Article  PubMed  CAS  Google Scholar 

  85. Fahnert, B. (2001) Rekombinantes humanes BMP-2 aus Escherichia coli—Strategien zur Expression und Funktionalisierung., Doctorate Thesis, Friedrich-Schiller-University Jena (Germany).

    Google Scholar 

  86. Voziyan, P. A., Jadhav, L., and Fisher, M. T. (2000) Refolding a glutamine synthetase truncation mutant in vitro: identifying superior conditions using a combination of chaperonins and osmolytes. J. Pharm. Sci. 89, 1036–1045.

    Article  PubMed  CAS  Google Scholar 

  87. Fisher, M. T. and Voziyan, P. (2002) Chaperonin and osmolyte protein folding and related screening methods. Patent US2002006636.

    Google Scholar 

  88. Ko, Y. H. and Pedersen, P. (2001) Methods for identifying an agent that corrects defective protein folding. Patent WO0121652.

    Google Scholar 

  89. Kirsch, T., Sebald, W., and Dreyer, M. K. (2000) Crystal structure of the BMP-2-BRIA ectodomain complex. Nat. Struct. Biol. 7, 492–496.

    Article  PubMed  CAS  Google Scholar 

  90. Kirsch, T., Nickel, J., and Sebald, W. (2000) Isolation of recombinant BMP receptor IA ectodomain and its 2∶1 complex with BMP-2. FEBS Lett. 468, 215–219.

    Article  PubMed  CAS  Google Scholar 

  91. Fahnert, B., Hahn, D., and Guthke, R. (2002) Knowledge-based assessment of gene expression data from chemiluminescence detection. J. Biotechnol. 94, 23–35.

    Article  PubMed  CAS  Google Scholar 

  92. Braun, P., Hu, Y., Shen, B., Halleck, A., Koundinya, M., Harlow, E., et al. (2002) Proteome-scale purification of human proteins from bacteria. Proc. Natl. Acad. Sci. USA 99, 2654–2659.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Fahnert, B. (2004). Folding-Promoting Agents in Recombinant Protein Production. In: Balbás, P., Lorence, A. (eds) Recombinant Gene Expression. Methods in Molecular Biology, vol 267. Humana Press. https://doi.org/10.1385/1-59259-774-2:053

Download citation

  • DOI: https://doi.org/10.1385/1-59259-774-2:053

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-262-9

  • Online ISBN: 978-1-59259-774-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics