Skip to main content

Using Nucleases to Stimulate Homologous Recombination

  • Protocol
Genetic Recombination

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 262))

Abstract

In essentially all organisms, double-strand breaks in chromosomal DNA stimulate repair by multiple mechanisms, including homologous recombination. It is possible to use site-specific reagents to produce a break or other recombinagenic damage at a unique site, which makes possible detailed analysis of the repair products. In addition, targeted mutagenesis and gene replacement are stimulated in the immediate vicinity of the break site. To utilize meganucleases with long recognition sequences, it is necessary to introduce the corresponding sequence prior to directed cleavage. The same is typically true of triplex-forming oligonucleotides that target polypurine-polypyrimidine tracts. Zinc-finger nucleases have the potential of being targetable to arbitrarily selected sites, owing to the flexibility of zinc finger recognition of DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muller, H. J. (1927) Artificial transmutation of the gene. Science 66, 84–87.

    Article  PubMed  CAS  Google Scholar 

  2. Haber, J. E. (1995) In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. Bioessays 17, 609–620.

    Article  PubMed  CAS  Google Scholar 

  3. Jasin, M. (1996) Genetic manipulation of genomes with rare-cutting endonu-cleases. Trends Genet. 12, 224–228.

    Article  PubMed  CAS  Google Scholar 

  4. Paques, F. and Haber, J. E. (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404.

    PubMed  CAS  Google Scholar 

  5. Friedberg, E. C., Walker, G. C., and Siede, W. (1995) DNA Repair and Mutagenesis. ASM Press, Washington, DC.

    Google Scholar 

  6. Haber, J. E. (2000) Partners and pathways repairing a double-strand break. Trends Genet. 16, 259–264.

    Article  PubMed  CAS  Google Scholar 

  7. van Gent, D. C., Hoeijmakers, J. H. J., and Kanaar, R. (2001) Chromosome stability and the double-strand break connection. Nat. Rev. Genet. 2, 196–206.

    Article  PubMed  Google Scholar 

  8. Jeggo, P. A. (1998) DNA breakage and repair. Adv. Genet. 38, 185–218.

    Article  PubMed  CAS  Google Scholar 

  9. Belfort, M. and Roberts, R. J. (1997) Homing endonucleases: keeping the house in order. Nucleic Acids Res. 25, 3379–3388.

    Article  PubMed  CAS  Google Scholar 

  10. Colleaux, L., ďAuriol, L., Galibert, F., and Dujon, B. (1988) Recognition and cleavage site of the intron-encoded omega transposase. Proc. Natl. Acad. Sci. USA 85, 6022–6026.

    Article  PubMed  CAS  Google Scholar 

  11. Rudin, N. and Haber, J. E. (1988) Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol. Cell. Biol. 8, 3918–3928.

    PubMed  CAS  Google Scholar 

  12. Capecchi, M. R. (1989) Altering the genome by homologous recombination. Science 244, 1288–1292.

    Article  PubMed  CAS  Google Scholar 

  13. Johnson, R. D. and Jasin, M. (2001) Double-strand-break-induced homologous recombination in mammalian cells. Biochem. Soc. Trans. 29, 196–201.

    Article  PubMed  CAS  Google Scholar 

  14. Brenneman, M., Gimble, F. S., and Wilson, J. H. (1996) Stimulation of intrachromosomal homologous recombination in human cells by electroporation with site-specific endonucleases. Proc. Natl. Acad. Sci. USA 93, 3608–3612.

    Article  PubMed  CAS  Google Scholar 

  15. Plessis, A., Perrin, A., Haber, J. E., and Dujon, B. (1992) Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130, 451–460.

    PubMed  CAS  Google Scholar 

  16. Rouet, P., Smih, F., and Jasin, M. (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096–8106.

    PubMed  CAS  Google Scholar 

  17. Lukacsovich, T., Yang, D., and Waldman, A. S. (1994) Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I-SceI. Nucleic Acids Res. 22, 5649–5657.

    Article  PubMed  CAS  Google Scholar 

  18. Aylon, Y., Liefshitz, B., Bitan-Banin, G., and Kupiec, M. (2003) Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 23, 1403–1417.

    Article  PubMed  CAS  Google Scholar 

  19. Pierce, A. J., Johnson, R. D., Thompson, L. H., and Jasin, M. (1999) XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 13, 2633–2638.

    Article  PubMed  CAS  Google Scholar 

  20. Liang, F., Romanienko, P. J., Weaver, D. T., Jeggo, P. A., and Jasin, M. (1996) Chromosomal double-strand break repair in Ku80-deficient cells. Proc. Natl. Acad. Sci. USA 93, 8929–8933.

    Article  PubMed  CAS  Google Scholar 

  21. Smih, F., Rouet, P., Romanienko, P. J., and Jasin, M. (1995) Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res. 23, 5012–5019.

    Article  PubMed  CAS  Google Scholar 

  22. Donoho, G., Jasin, M., and Berg, P. (1998) Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cell. Mol. Cell. Biol. 18, 4070–4078.

    PubMed  CAS  Google Scholar 

  23. Moynahan, M. E. and Jasin, M. (1997) Loss of heterozygosity induced by a chromosomal double-strand break. Proc. Natl. Acad. Sci. USA 94, 8988–8993.

    Article  PubMed  CAS  Google Scholar 

  24. Elliott, B., Richardson, C., Winderbaum, J., Nickoloff, J. A., and Jasin, M. (1998) Gene conversion tracts from double-strand break repair in mammalian cells. Mol. Cell. Biol. 18, 93–101.

    PubMed  CAS  Google Scholar 

  25. Richardson, C. and Jasin, M. (2000) Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405, 697–700.

    Article  PubMed  CAS  Google Scholar 

  26. Choulika, A., Perrin, A., Dujon, B., and Nicolas, J.-F. (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 1968–1973.

    PubMed  CAS  Google Scholar 

  27. Segal, D. J. and Carroll, D. (1995) Endonuclease-induced, targeted homologous extrachromosomal recombination in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 92, 806–810.

    Article  PubMed  CAS  Google Scholar 

  28. Puchta, H., Dujon, B., and Hohn, B. (1996) Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc. Natl. Acad. Sci. USA 93, 5055–5060.

    Article  PubMed  CAS  Google Scholar 

  29. Cohen-Tannoudji, M., Robine, S., Choulika, A., et al. (1998) I-SceI-induced gene replacement at a natural locus in embryonic stem cells. Mol. Cell. Biol. 18, 1444–1448.

    PubMed  CAS  Google Scholar 

  30. Lin, Y., Lukacsovich, T., and Waldman, A. S. (1999) Multiple pathways for repair of DNA double-strand breaks in mammalian chromosomes. Mol. Cell. Biol. 19, 8353–8360.

    PubMed  CAS  Google Scholar 

  31. Elliott, B. and Jasin, M. (2001) Repair of double-strand breaks by homologous recombination in mismatch repair-defective mammalian cells. Mol. Cell. Biol. 21, 2671–2682.

    Article  PubMed  CAS  Google Scholar 

  32. Kim, Y.-G., Cha, J., and Chandrasegaran, S. (1996) Hybrid restriction enzymes: zinc finger fusions to FokI cleavage domain. Proc. Natl. Acad. Sci. USA 93, 1156–1160.

    Article  PubMed  CAS  Google Scholar 

  33. Isalan, M., Klug, A., and Choo, Y. (1998) Comprehensive DNA recognition through concerted interactions from adjacent zinc fingers. Biochemistry 37, 12,026–12,033.

    Article  PubMed  CAS  Google Scholar 

  34. Pabo, C. O., Peisach, E. and Grant, R. A. (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70, 313–340.

    Article  PubMed  CAS  Google Scholar 

  35. Segal, D. J. (2002) The use of zinc finger peptides to study the role of specific factor binding sites in the chromatin environment. Methods 26, 76–83.

    Article  PubMed  CAS  Google Scholar 

  36. Bitinaite, J., Wah, D. A., Aggarwal, A. K., and Schildkraut, I. (1998) FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA 95, 10,570–10,575.

    Article  PubMed  CAS  Google Scholar 

  37. Smith, J., Bibikova, M., Whitby, F. G., Reddy, A. R., Chandrasegaran, S., and Carroll, D. (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 28, 3361–3369.

    Article  PubMed  CAS  Google Scholar 

  38. Bibikova, M., Carroll, D., Segal, D. J., et al. (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21, 289–297.

    Article  PubMed  CAS  Google Scholar 

  39. Bibikova, M., Golic, M., Golic, K. G., and Carroll, D. (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175.

    PubMed  CAS  Google Scholar 

  40. Bibikova, M., Beumer, K., Trautman, J. K., and Carroll, D. (2003) Enhancing gene targeting by target cleavage with designed zinc-finger nucleases. Science 300, 764.

    Article  PubMed  CAS  Google Scholar 

  41. Segal, D. J., Dreier, B., Beerli, R. R., and Barbas III, C. F. (1999) Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN’-3′ DNA target sequences. Proc. Natl. Acad. Sci. USA 96, 2758–2763.

    Article  PubMed  CAS  Google Scholar 

  42. Liu, Q., Xia, Z. Q., Zhang, X., and Case, C. C. (2002) Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J. Biol. Chem. 277, 3850–3856.

    Article  PubMed  CAS  Google Scholar 

  43. Dreier, B., Beerli, R. R., Segal, D. J., Flippin, J. D., and Barbas III, C. F. (2001) Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 276, 29,466–29,478.

    Article  PubMed  CAS  Google Scholar 

  44. Porteus, M. and Baltimore, D. (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763.

    Article  PubMed  Google Scholar 

  45. Greisman, H. A. and Pabo, C. O. (1997) A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 275, 657–661.

    Article  PubMed  CAS  Google Scholar 

  46. Liu, Q., Segal, D. J., Ghiara, J. B., and Barbas III, C. F. (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc. Natl. Acad. Sci. USA 94, 5525–5530.

    Article  PubMed  CAS  Google Scholar 

  47. Beerli, R. R., Segal, D. J., Dreier, B., and Barbas III, C. F. (1998) Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc. Natl. Acad. Sci. USA 95, 14,628–14,633.

    Article  PubMed  CAS  Google Scholar 

  48. Kim, J.-S. and Pabo, C. O. (1998) Getting a handhold on DNA: design of polyzinc finger proteins with femtomolar dissociation constants. Proc. Natl. Acad. Sci. USA 95, 2812–2817.

    Article  PubMed  CAS  Google Scholar 

  49. Isalan, M., Klug, A., and Choo, Y. (2001) A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat. Biotech. 19, 656–660.

    Article  CAS  Google Scholar 

  50. Moore, M., Choo, Y., and Klug, A. (2001) Design of polyzinc finger peptides with structured linkers. Proc. Natl. Acad. Sci. USA 98, 1432–1436.

    Article  PubMed  CAS  Google Scholar 

  51. Moore, M., Klug, A., and Choo, Y. (2001) Improved DNA binding specificity from polyzinc finger peptides by using strings of two-finger units. Proc. Natl. Acad. Sci. USA 98, 1437–1441.

    Article  PubMed  CAS  Google Scholar 

  52. Phillips, J. W. and Morgan, W. F. (1994) Illegitimate recombination induced by DNA double-strand breaks in a mammalian chromosome. Mol. Cell. Biol. 14, 5794–5803.

    PubMed  CAS  Google Scholar 

  53. Vasquez, K. M. and Wilson, J. H. (1998) Triplex-directed modifications of genes and gene activity. Trends Biochem. Sci. 23, 4–9.

    Article  PubMed  CAS  Google Scholar 

  54. Casey, B. P. and Glazer, P. M. (2001) Gene targeting via triple-helix formation. Prog. Nucleic Acid Res. Mol. Biol. 67, 163–192.

    Article  PubMed  CAS  Google Scholar 

  55. Sandor, Z. and Bredberg, A. (1995) Triple helix directed psoralen adducts induce a low frequency of recombination in an SV40 shuttle vector. Biochim. Biophys. Acta 1263, 235–240.

    PubMed  Google Scholar 

  56. Faruqi, A. F., Seidman, M. M., Segal, D. J., Carroll, D., and Glazer, P. M. (1996) Recombination induced by triple helix-targeted DNA damage in mammalian cells. Mol. Cell. Biol. 16, 6820–6828.

    PubMed  CAS  Google Scholar 

  57. Faruqi, A. F., Datta, H. J., Carroll, D., Seidman, M. M., and Glazer, P. M. (2000) Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Mol. Cell. Biol. 20, 990–1000.

    Article  PubMed  CAS  Google Scholar 

  58. Jachymczyk, W. J., von Borstel, R. C., Mowat, M. R. A., and Hastings, P. J. (1981) Repair of interstrand cross-links in DNA of Saccharomyces cerevisiae requires two systems for DNA repair: the RAD3 system and the RAD51 system. Mol. Gen. Genet. 182, 196–205.

    Article  PubMed  CAS  Google Scholar 

  59. Dardalhon, M. and Averbeck, D. (1995) Pulsed-field gel electrophoresis analysis of the repair of psoralen plus UVA induced DNA photoadducts in Saccharomyces cerevisiae. Mutat. Res. 366, 49–60.

    Google Scholar 

  60. Nielsen, P. E., Egholm, M., Berg, R. H., and Buchardt, O. (1993) Peptide nucleic acids (PNAs): potential antisense and anti-gene agents. Anticancer Drug Des. 8, 53–63.

    PubMed  CAS  Google Scholar 

  61. Dervan, P. B. (2001) Molecular recognition of DNA by small molecules. Bioorg. Med. Chem. 9, 2215–2235.

    Article  PubMed  CAS  Google Scholar 

  62. Rogers, F. A., Vasquez, K. M., Egholm, M., and Glazer, P. M. (2002) Site-directed recombination via bifunctional PNA-DNA conjugates. Proc. Natl. Acad. Sci. USA 99, 16,695–16,700.

    Article  PubMed  CAS  Google Scholar 

  63. McClintock, B. (1939) The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc. Natl. Acad. Sci. USA 25, 405–416.

    Article  PubMed  CAS  Google Scholar 

  64. McClintock, B. (1942) The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Carroll, D. (2004). Using Nucleases to Stimulate Homologous Recombination. In: Waldman, A.S. (eds) Genetic Recombination. Methods in Molecular Biology™, vol 262. Humana Press. https://doi.org/10.1385/1-59259-761-0:195

Download citation

  • DOI: https://doi.org/10.1385/1-59259-761-0:195

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-236-0

  • Online ISBN: 978-1-59259-761-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics