Skip to main content

Detection of Centrosome Structure in Fertilized and Artificially Activated Sea Urchin Eggs Using Immunofluorescence Microscopy and Isolation of Centrosomes Followed by Structural Characterization with Field Emission Scanning Electron Microscopy

  • Protocol
Germ Cell Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 253))

Abstract

Sea urchin eggs have been used for over a century to study fertilization, cell division, cell differentiation, and embryo development. This system provides excellent and abundant material to investigate the basic mechanisms underlying germ cell functions and to explore tools that facilitate the studies of other less readily available germ cell systems. Immunofluorescence microscopy of microtubule organization performed in sea urchin eggs (1,2) led to numerous subsequent studies on the cytoskeleton in invertebrate (38) and mammalian (912) reproductive cell systems. The pioneering studies on centrosomes in sea urchin eggs were performed over 100 yr ago by Boveri (13) and have provided a wealth of information and insights that has led to a renaissance and an explosion in centrosome research during the past few years. By using iron hematoxylin as the primary staining technique in fertilized sea urchin eggs, Boveri showed elegantly that dominant centrosome material is contributed by sperm. He showed that sperm centrosomes reorganize after pronuclear fusion and separate to the mitotic poles to form the mitotic apparatus during cell division. Moreover, he showed that sea urchin eggs fertilized with more than one sperm contained supernumerary centrosomes, resulting in multipolar spindles that lead to unequal chromosome separation during cell division. These studies on sea urchin eggs gave thought to the fascinating idea that the formation of multiple centrosome organizations might be involved in the development and progression of malignant tumors (14).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris, P., Osborn, M., and Weber, K. (1980) A spiral array of microtubules in the fertilized sea urchin egg cortex examined by indirect immunofluorescence and electron microscopy. Exp. Cell Res. 126, 227–236.

    Article  PubMed  CAS  Google Scholar 

  2. Harris, P. J. (1986) Cytology and immunocytochemistry. Methods Cell Biol. 27, 243–262.

    Article  PubMed  CAS  Google Scholar 

  3. Bestor, T. H. and Schatten, G. (1981) Anti-tubulin immunofluorescence microscopy of microtubules present during the pronuclear movements of sea urchin fertilization. Dev. Biol. 88, 80–91.

    Article  PubMed  CAS  Google Scholar 

  4. Hertzler, P. L. and Clark, W. H., Jr. (1993) The late events of fertilisation in the penaeoidean shrimp Sicyonia ingentis. Zygote 4, 287–296.

    Google Scholar 

  5. Salmon, E. D. (1982) Mitotic spindles isolated from sea urchin eggs with EGTA lysis buffers. Methods Cell Biol. 25, 69–105.

    Article  PubMed  Google Scholar 

  6. Schatten, H., Schatten, G., Mazia, D., et al. (1986) Behavior of centrosomes during fertilization and cell division in mouse oocytes and sea urchin eggs. Proc. Natl. Acad. Sci. USA 83, 105–109.

    Article  PubMed  CAS  Google Scholar 

  7. Sluder, G., Miller, F. J., Lewis, K., et al. (1989) Centrosome inheritance in starfish zygotes: selective loss of the maternal centrosome after fertilization. Dev. Biol. 131, 567–579.

    Article  PubMed  CAS  Google Scholar 

  8. Staiber W. (1994) Immunofluorescence study of spindle microtubule arrangements during differential gonial mitosis of Acricotopus lucidus (Diptera, Chironomidae). Cell Struct. Funct. 19, 97–101.

    Article  PubMed  CAS  Google Scholar 

  9. Gard, D. L. (1991) Organization, nucleation, and acetylation of microtubules in Xenopus laevis oocytes: a study by confocal immunofluorescence microscopy. Dev. Biol. 143, 346–362.

    Article  PubMed  CAS  Google Scholar 

  10. Lee, J., Miyano, T., and Moor, R. M. (2000) Spindle formation and dynamics of gamma-tubulin and nuclear mitotic apparatus protein distribution during meiosis in pig and mouse oocytes. Biol. Reprod. 5, 1184–1192.

    Article  Google Scholar 

  11. Meng, L. and Wolf, D. P. (1997) Sperm-induced oocyte activation in the rhesus monkey: nuclear and cytoplasmic changes following intracytoplasmic sperm injection. Hum. Reprod. 5, 1062–1068.

    Article  Google Scholar 

  12. Schatten, H., Walter, M., Biessmann, H., et al. (1987) Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: characterization of stages of the division cycle of centrosomes. Proc. Natl. Acad. Sci. USA 84, 8488–8492.

    Article  PubMed  CAS  Google Scholar 

  13. Boveri, T. (1901) Zellen-Studien IV: Ueber die Natur der Centrosomen Jena. Zeitschr. Naturwiss 35, 1–220.

    Google Scholar 

  14. Boveri, T. (1914) Zur Frage der Entstehung maligner Tumoren, G. Fisher, Jena, Germany.

    Google Scholar 

  15. Bornens, M. (2002) Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 14, 25–34.

    Article  PubMed  CAS  Google Scholar 

  16. Brinkley, B. R. and Goepfert, T. M. (1998) Supernumerary centrosomes and cancer: Boveri’s hypothesis resurrected. Cell Motil. Cytoskel. 41(4), 281–288.

    Article  CAS  Google Scholar 

  17. Doxsey, S. (2001) Re-evaluating centrosome function. Nat. Rev. Mol. Cell Biol. 9, 688–698.

    Article  Google Scholar 

  18. Lingle, W. L., Lutz, W. H., Ingle, J. N., et al. (1998) Centrosome hypertrophy in human breast tumors: Implications for genomic stability and cell polarity. Proc. Natl. Acad. Sci. USA 95, 2950–2955.

    Article  PubMed  CAS  Google Scholar 

  19. Nigg, E. A. (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat. Rev. Cancer 11, 815–825.

    Article  Google Scholar 

  20. Pihan, G., Purohit, A., Knecht, H., et al. (1998) Centrosomes and cancer. Cancer Res. 58, 3974–3985.

    PubMed  CAS  Google Scholar 

  21. Rieder, C. L., Faruki, S., and Khodjakov, A. (2001) The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol. 10, 413–419.

    Article  Google Scholar 

  22. Schatten, H., Walter, M., Biessmann, H., et al. (1992) Activation of maternal centrosomes in unfertilized sea urchin eggs. Cell Motil. Cytoskel 23, 61–70.

    Article  CAS  Google Scholar 

  23. Thompson-Coffe, C., Coffe, G., Schatten, H., et al. (1996) Cold-treated centrosomes from mitotic sea urchin eggs. Production of an anticentrosomal antibody, and novel ultrastructural imaging. Cell Motil. Cytoskel. 33, 197–207.

    Article  CAS  Google Scholar 

  24. Balczon, R. (1996) The centrosome in animal cells and its functional homologs in plant and yeast cells. Int. Rev. Cytol. 169, 25–82.

    Article  PubMed  CAS  Google Scholar 

  25. Mazia, D. (1987) The chromosome cycle and the centrosome cycle in the mitotic cycle. Int. Rev. Cytol. 100, 49–92.

    Article  PubMed  CAS  Google Scholar 

  26. Meraldi, P. and Nigg E. A. (2002) The centrosome cycle. FEBS Lett. 521, 9–13.

    Article  PubMed  CAS  Google Scholar 

  27. Vandre, D., Davis, F., Rao, P., et al. (1984) Phosphoproteins are components of mitotic microtubule organizing centers. Proc. Natl. Acad. Sci. USA 81, 4439–4443.

    Article  PubMed  CAS  Google Scholar 

  28. Saredi, A., Howard, L., and Compton, D. A. (1997) Phosphorylation regulates the assembly of NuMA in a mammalian mitotic extract. J. Cell Sci. 110, 1287–1297.

    PubMed  CAS  Google Scholar 

  29. Hinchcliffe, E. H., Li, C., Thompson, E. A., et al. (1999) Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283, 851–854.

    Article  PubMed  CAS  Google Scholar 

  30. Stearns, T. and Kirschner, M. (1994) In vitro reconstitution of centrosome assembly and function: the central role of γ-tubulin. Cell 76, 623–637.

    Article  PubMed  CAS  Google Scholar 

  31. Vacquier, V. D. (1975) The isolation of the intact cortical granule from sea urchin eggs: calcium ions trigger granule discharge. Dev. Biol. 43, 62–74.

    Article  PubMed  CAS  Google Scholar 

  32. Epel, D. (1977) The program of fertilization. Sci. Am. 237, 128–138.

    Article  PubMed  CAS  Google Scholar 

  33. Schatten, H. (1994) Dithiothreitol prevents membrane fusion but not centrosome or microtubule organization during the first cell cycles in sea urchins. Cell Motil. Cytoskel. 27, 59–68.

    Article  CAS  Google Scholar 

  34. Horio, T., Uzawa, S., Jung, M. K., et al. (1991) The fission yeast gamma-tubulin is essential for mitosis and is localized at microtubule organizing centers. J. Cell Sci. 99, 693–700.

    PubMed  CAS  Google Scholar 

  35. Joshi, H. C., Palacios, M. J., McNamara, L., et al. (1992) γ-Tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature 356, 80–83.

    Article  PubMed  CAS  Google Scholar 

  36. Moritz, M., Brownfeld, M. B., Sedat, J. W., et al. (1995) Microtubule nucleation by gamma-tubulin-containing rings in the centrosome. Nature 378, 638–640.

    Article  PubMed  CAS  Google Scholar 

  37. Oakley, C. D. and Oakley, B. R. (1989) Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338, 662–664.

    Article  PubMed  CAS  Google Scholar 

  38. Zheng, Y., Wong, M. L., Alberts, B., et al. (1995) Nucleation of microtubule assembly by a gamma-tubulin-ring complex. Nature 378, 578–583.

    Article  PubMed  CAS  Google Scholar 

  39. Simerly, C., Wu, G. J., Zoran, S., et al. (1995) The paternal inheritance of the centrosome, the cell’s microtubule-organizing center, in humans, and the implications for infertility. Nature Med. 1, 47–52.

    Article  PubMed  Google Scholar 

  40. Schatten, H., Wiedemeier, A. M., Taylor, M., et al. (2000) Centrosome-centriole abnormalities are markers for abnormal cell divisions and cancer in the transgenic adenocarcinoma mouse prostate (TRAMP) model. Biol. Cell 92, 331–340.

    Article  PubMed  CAS  Google Scholar 

  41. Schatten, H., Hueser, C. N., and Chakrabarti, A. (2000) From fertilization to cancer: the role of centrosomes in the union and separation of genomic material. Microsc. Res. Tech. 49, 420–427.

    Article  PubMed  CAS  Google Scholar 

  42. Paweletz, N., Mazia, D., and Finze, E.-M. (1984) The centrosome cycle in the mitotic cycle of sea urchin eggs. Exp. Cell Res. 152, 47–65.

    Article  PubMed  CAS  Google Scholar 

  43. Sathananthan, A. H. (1997) Ultrastructure of the human egg. Hum. Cell 10, 21–38.

    PubMed  CAS  Google Scholar 

  44. Zeligs, J. D. and Wollman, S. H. (1979) Mitosis in rat thyroid epithelial cells in vivo. II. Centrioles and pericentriolar material. J. Ultrastruct. Res. 66, 97–108.

    Article  PubMed  CAS  Google Scholar 

  45. Mazia, D. (1984) Centrosomes and mitotic poles. Exp. Cell. Res. 153, 1–15.

    Article  PubMed  CAS  Google Scholar 

  46. Schatten, H. and Chakrabarti, A. (1998) Centrosome structure and function is altered by chloral hydrate and diazepam during the first reproductive cell cycles in sea urchin eggs. Eur. J. Cell Biol. 75, 9–20.

    PubMed  CAS  Google Scholar 

  47. Balczon, R. and Schatten, G. (1983) Microtubule containing detergent-extracted cytoskeletons in sea urchin eggs from fertilization through cell division. Cell Motil. Cytoskel. 3, 213–226.

    Article  Google Scholar 

  48. Calarco-Gillam, P. C., Siebert, M. C., Hubble, R., et al. (1983) Centrosome development in early mouse embryos as defined by an autoantibody against pericentriolar material. Cell 35, 621–629.

    Article  PubMed  CAS  Google Scholar 

  49. Mitchison, T. J. and Kirschner, M. W. (1986) Isolation of mammalian centrosomes. Methods Enzymol. 134, 261–268.

    Article  PubMed  CAS  Google Scholar 

  50. Blomberg-Wirschell, M. and Doxsey, S. J. (1998) Rapid isolation of centrosomes. Methods Enzymol. 298, 228–238.

    Article  PubMed  CAS  Google Scholar 

  51. Moritz, M. and Alberts, B. M. (1999) Isolation of centrosomes from Drosophila embryos. Methods Cell Biol. 61, 1–12.

    Article  PubMed  CAS  Google Scholar 

  52. Palazzo, R. E. and Vogel, J. M. (1999) Isolation of centrosomes from Spisula solidissima oocytes. Methods Cell Biol. 61, 35–56.

    Article  PubMed  CAS  Google Scholar 

  53. Graf, R. (2001) Isolation of centrosomes from Dictyostelium. Methods Cell Biol. 67, 337–357.

    Article  PubMed  CAS  Google Scholar 

  54. Gergely, F. (2002) Centrosomal TACCtics. BioEssays 24, 915–925.

    Article  PubMed  CAS  Google Scholar 

  55. Mack, G. M., Ou, Y., and Rattner, J. B. (2000) Integrating centrosome structure with protein composition and function in animal cells. Microsc. Res. Tech. 49(5), 409–419.

    Article  PubMed  CAS  Google Scholar 

  56. Zeng, C. (2000) NuMA: a nuclear protein involved in mitotic centrosome function. Microsc. Res. Tech. 49, 467–477.

    Article  PubMed  CAS  Google Scholar 

  57. Zinovkina, L. A. and Nadezhdina, E. S. (1996) Centrosomal proteins. Biokhimiia 61, 1347–1365.

    PubMed  CAS  Google Scholar 

  58. Joswig, G. and Petzelt, C. (1990) The centrosomal cycle: visualization in PtK cells by a monoclonal antibody to centrosomal 32kd protein. Cell Motil. Cytoskel. 15, 181–192.

    Article  Google Scholar 

  59. Joswig, G., Petzelt, C., and Werner, D. (1991) Murine cDNAs coding for the centrosomal antigen centrosomin A. J. Cell Sci. 98(Pt. 1), 37–43.

    PubMed  CAS  Google Scholar 

  60. Balczon, R., Varden, C. E., and Schroer, T. A. (1999) Role for microtubules in centrosome doubling in Chinese hamster ovary cells. Cell Motil. Cytoskel. 42, 60–72.

    Article  CAS  Google Scholar 

  61. Daunderer, C. and Graf, R. O. (2002) Molecular analysis of the cytosolic Dictyostelium gamma-tubulin complex. Eur. J. Cell Biol. 81, 175–184.

    Article  PubMed  CAS  Google Scholar 

  62. Helfant, A. H. (2002) Composition of the spindle pole body of Saccharomyces cerevisiae and the proteins involved in its duplication. Curr. Genet. 40, 291–310.

    Article  PubMed  CAS  Google Scholar 

  63. Kalt, A. and Schliwa, M. (1996) A novel structural component of the Dictyostelium centrosome. J. Cell Sci. 109, 3103–3112.

    PubMed  CAS  Google Scholar 

  64. Lacey, K. R., Jackson, P. K., and Stearns, T. (1999) Cyclin-dependent kinase control of centrosome duplication. Proc. Natl. Acad. Sci. USA 96, 2817–2822.

    Article  PubMed  CAS  Google Scholar 

  65. Lange, B. M., Bachi, A., Wilm, M., et al. (2000) Hsp90 is a core centrosomal component and is required at different stages of the centrosome cycle in Drosophila and vertebrates. EMBO J. 19, 1252–1262.

    Article  PubMed  CAS  Google Scholar 

  66. Ou, Y. Y., Mack, G. J., Zhang, M., et al. (2002) CEP110 and ninein are located in a specific domain of the centrosome associated with centrosome maturation. J. Cell Sci. 115, 1825–1835.

    PubMed  CAS  Google Scholar 

  67. Moritz, M., Braunfeld, M. B., Fung, J. C., et al. (1995) Three-dimensional structural characterization of centrosomes from early Drosophila embryos. J. Cell Biol. 30, 1149–1159.

    Article  Google Scholar 

  68. Schatten, H. and Ris, H. (2002) Unconventional specimen preparation techniques using high resolution low voltage field emission scanning electron microscopy to study cell motility, host cell invasion, and internal cell structures in Toxoplasma gondii. Microsc. Microanal. 8, 94–103.

    Article  PubMed  CAS  Google Scholar 

  69. Falkner, F. G., Saumweber, H., and Biessmann, H. (1981) Two Drosophila melanogaster proteins related to intermediate filament proteins of invertebrate cells. J. Cell Biol. 91, 175–183.

    Article  PubMed  CAS  Google Scholar 

  70. Balczon, R. and West, K. (1991) The identification of mammalian centrosomal antigens using human autoimmune anticentrosome antisera. Cell Motil. Cytoskel. 20, 121–135.

    Article  CAS  Google Scholar 

  71. Rattner, J. B. (1992) Ultrastructure of centrosome domains and identification of their protein components, in The Centrosome (Kalnins, V. I., ed.), Academic, San Diego, CA, pp. 45–68.

    Google Scholar 

  72. Foerder, C. and Shapiro, B. H. (1977) Release of ovoperoxidase from sea urchin eggs hardens the fertilization membrane with tyrosine crosslinker. Proc. Natl. Acad. Sci. USA 74, 4214–4218.

    Article  PubMed  CAS  Google Scholar 

  73. Mazia, D., Schatten, H., Coffe, G., et al. (1987) Aggregation of the mitotic centrosomes into a single spherical centrosome by cold treatment in sea urchin eggs. J. Cell Biol. 105, 206a.

    Google Scholar 

  74. Suprenant, K. A. (1986) Tubulin-containing structures. Methods Cell Biol. 27, 189–215.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Schatten, H., Chakrabarti, A. (2004). Detection of Centrosome Structure in Fertilized and Artificially Activated Sea Urchin Eggs Using Immunofluorescence Microscopy and Isolation of Centrosomes Followed by Structural Characterization with Field Emission Scanning Electron Microscopy. In: Schatten, H. (eds) Germ Cell Protocols. Methods in Molecular Biology™, vol 253. Humana Press. https://doi.org/10.1385/1-59259-744-0:151

Download citation

  • DOI: https://doi.org/10.1385/1-59259-744-0:151

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-121-9

  • Online ISBN: 978-1-59259-744-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics