Skip to main content

Analytical Ultracentrifugation of Chromatin

  • Protocol
Chromatin Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 119))

Abstract

The ability of analytical ultracentrifugation to elucidate chromatin structure/function relationships originates directly from its capacity to accurately measure key structural properties of complex macromolecular assemblies in solution. Figure 1 schematically illustrates the complex nature of chromatin. Newly replicated DNA is wrapped around core histone octamers spaced at approx 200 bp intervals to form nucleosomal arrays, which then interact with linker histones and numerous other nonhistone chromosomal proteins to form “chromatin.” Chromatin is conformationally dynamic, undergoing a number of short-range and long-range folding transitions to produce highly condensed interphase chromosomal fibers (Fig. 1). For short chromatin fragments studied in vitro, fiber condensation manifests both in the form of intramolecular conformational changes and reversible oligomerization (14). In addition, the structure of chromatin fibers and functions such as transcription and replication are irrevocably linked; any given region of a chromosomal fiber can be either functionally active or inactive depending on both its specific complement of chromatin-associated proteins and its overall state of condensation (1,2). Consequently, to biochemically characterize chromatin structure/function relationships in vitro, one must be able to analyze both the intramolecular conformational dynamics and intermolecular interactions of an exceedingly complex macromolecular assembly (e.g., a 12-mer nucleosomal array containing one H1 molecule per nucleosome consists of >100 proteins and 2400 bp of DNA, has a molecular mass of approx 3.5×106 D, yet represents only roughly one millionth of an intact eukaryotic chromosome.)

Schematic illustration of the hierarchical relationships between DNA, chromatin, and interphase chromosomal fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolffe, A. P. (1995) Chromatin: Structure and Function, 2nd edition. Academic Press, New York.

    Google Scholar 

  2. Fletcher, T. M. and Hansen, J. C. (1996) The nucleosomal array: structure/function relationships. Crit. Rev. Eukaryot. Gene Expr. 6, 149–188.

    PubMed  CAS  Google Scholar 

  3. Schwarz, P. M. and Hansen, J. C. (1994) Formation and stability of higher order chromatin structures: contributions of the histone octamer. J. Biol. Chem. 269, 16,284–16,289.

    PubMed  CAS  Google Scholar 

  4. Schwarz, P. M., Felthauser, A., Fletcher, T. M., and Hansen, J. C. (1996) Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains. Biochemistry 35, 4009–4015.

    Article  PubMed  CAS  Google Scholar 

  5. Cantor, C. R. and Schimmel, P. R. (1980) Biophysical Chemistry, Part II. W.H. Freeman and Co., San Francisco, CA.

    Google Scholar 

  6. van Holde, K. E. (1985) Physical Biochemistry, 2nd Ed. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  7. Ralston, G. (1993) Introduction to Analytical Ultracentrifugation. Beckman Instruments, Fullerton, CA.

    Google Scholar 

  8. Hansen, J. C., Lebowitz, J., and Demeler, B. (1994) Analytical ultracentrifugation of complex macromolecular systems. Biochemistry 33, 13,155–13,163.

    Article  PubMed  CAS  Google Scholar 

  9. Hensley, P. (1996) Defining the structure and stability of macromolecular assemblies in solution: the re-emergence of analytical ultracentrifugation as a practical tool. Structure 4, 367–373.

    Article  PubMed  CAS  Google Scholar 

  10. Schuster, T. M. and Toedt, J. M. (1996) New revolutions in the evolution of analytical ultracentrifugation. Curr. Opin. Struct. Biol. 6, 650–658.

    Article  PubMed  CAS  Google Scholar 

  11. Hansen, J. C., Ausio, J., Stanik, V. H., and van Holde, K. E. (1989) Homogeneous reconstituted oligonucleosomes: evidence for salt-dependent folding in the absence of histone H1. Biochemistry 28, 9129–9136.

    Article  PubMed  CAS  Google Scholar 

  12. Hansen, J. C. and Wolffe, A. P. (1992) Influence of chromatin folding on transcription initiation and elongation by RNA polymerase III. Biochemistry 31, 7977–7988.

    Article  PubMed  CAS  Google Scholar 

  13. Hansen, J. C. and Wolffe, A. P. (1994) A role for histones H2A/H2B in chromatin folding and transcriptional repression. Proc. Natl. Acad. Sci. USA 91, 2339–2343.

    Article  PubMed  CAS  Google Scholar 

  14. Butler, P. J. G. and Thomas, J. O. (1980) Changes in chromatin folding in solution. J. Mol. Biol. 140, 505–529.

    Article  PubMed  CAS  Google Scholar 

  15. Walker, I. O. (1984) Differential dissociation of histone tails from core chromatin. Biochemistry 23, 5622–5628.

    Article  PubMed  CAS  Google Scholar 

  16. Gale, J. M. and Smerdon, M. J. (1988) Photofootprint of nucleosome core DNA in intact chromatin having different structural states. J. Mol. Biol. 204, 949–958.

    Article  PubMed  CAS  Google Scholar 

  17. Laue, T. M., Anderson, A. L., and Demaine, P. D. (1994) An on-line interferometer for the XL-A ultracentrifuge. Progress in Colloid and Polymer Science 94, 74–81.

    Article  CAS  Google Scholar 

  18. Demeler, B., Saber, H., and Hansen, J. C. (1997) Identification and interpretation of complexity in sedimentation velocity boundaries. Biophys. J. 72, 397–407.

    Article  PubMed  CAS  Google Scholar 

  19. Stafford, W. F., III. (1992) Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal. Biochem. 203, 295–301.

    Article  PubMed  CAS  Google Scholar 

  20. van Holde, K. E. and Weischet, W. O. (1978) Boundary analysis of sedimentation-velocity experiments with monodisperse and paucidisperse solutes. Biopolymers, 17, 1387–1403.

    Article  Google Scholar 

  21. Tse, C. and Hansen, J. C. (1997) Hybrid trypsinized nucleosomal arrays: identification of multiple functional roles of the H2A/H2B and H3/H4 N-termini in chromatin fiber compaction. Biochemistry 36, 11,381–11,388.

    Article  PubMed  CAS  Google Scholar 

  22. Hansen, J. C., van Holde, K. E. and Lohr, D. (1991) The mechanism of nucleosome assembly onto oligomers of the sea urchin 5S DNA positioning sequence. J. Biol. Chem. 266, 4276–4282.

    PubMed  CAS  Google Scholar 

  23. Johnson, M. L., Correia, J. J., Yphantis, D. A. and Halvorson, H. R. (1981) Analysis of data from the analytical ultracentrifuge by non-linear least squares techniques. Biophys. J. 36, 575–588.

    Article  PubMed  CAS  Google Scholar 

  24. McRorie, D. K., and Voelker, P. J. (1993) Self-Associating Systems in the Analytical Ultracentrifuge. Beckman Instruments, Inc., Fullerton, CA.

    Google Scholar 

  25. Hansen, J. C., Kreider, J. I., Demeler, B. and Fletcher, T. M. (1997) Analytical ultracentrifugation and agarose gel electrophoresis as tools for studying chromatin folding in solution. Methods: A Companion to Methods Enzymol. 12, 62–72.

    Article  CAS  Google Scholar 

  26. Carruthers, L. M., Bednar, J., Woodcock, C. L., and Hansen, J. C. (1998) Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding. Biochemistry 37, 17,776–14,787.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Hansen, J.C., Turgeon, C.L. (1999). Analytical Ultracentrifugation of Chromatin. In: Becker, P.B. (eds) Chromatin Protocols. Methods in Molecular Biology™, vol 119. Humana Press. https://doi.org/10.1385/1-59259-681-9:127

Download citation

  • DOI: https://doi.org/10.1385/1-59259-681-9:127

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-665-9

  • Online ISBN: 978-1-59259-681-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics