Skip to main content

RNAi in Cultured Drosophila Cells

  • Protocol
Drosophila Cytogenetics Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 247))

Abstract

Double-stranded RNA (dsRNA)-mediated interference, or RNAi, has emerged as an effective technique to phenocopy the loss of function of a given gene product. With this tool researchers can study the functions of individual molecules in living cells and elucidate the mechanisms that regulate cell division. For example, many molecules that are important for regulating mitosis and for controlling the assembly of the mitotic spindle are mutated in different cancer cell types (for a review, see ref. 1). Functional analysis in vivo of molecules that play a role in mitosis is best implemented by a genetic analysis. For this, genetically malleable organisms such as Drosophila, Caenorhabditis elegans, yeast, and other micro-organisms have been extremely useful. Whereas genetic analysis usually requires a long-term effort, RNAi provides a rapid method for the reverse genetic analysis of gene product function and can be exploited to great advantage. In the era of sequenced genomes, this technique provides a valuable tool for functional genomics. Here, a detailed procedure for RNAi in Drosophila cells in culture is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jordan, M. A. and Wilson, L. (1998) Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr. Opin. Cell. Biol. 10, 123–130.

    Article  PubMed  CAS  Google Scholar 

  2. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  3. Vaucheret, H., Beclin, C., and Fagard, M. (2001) Post-transcriptional gene silencing in plants. J. Cell Sci. 114, 3083–3091.

    PubMed  CAS  Google Scholar 

  4. Cogoni, C. (2001) Homology-dependent gene silencing mechanisms in fungi. Annu. Rev. Microbiol. 55, 381–406.

    Article  PubMed  CAS  Google Scholar 

  5. Cogoni, C. and Macino, G. (2000) Post-transcriptional gene silencing across kingdoms. Curr. Opin. Genet. Dev. 10, 638–643.

    Article  PubMed  CAS  Google Scholar 

  6. Kennerdell, J. R. and Carthew, R. W. (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017–1026.

    Article  PubMed  CAS  Google Scholar 

  7. Clemens, J. C., Worby, C. A., Simonson-Leff, N., et al. (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. USA 97, 6499–6503.

    Article  PubMed  CAS  Google Scholar 

  8. Brown, S. J., Mahaffey, J. P., Lorenzen, M. D., Denell, R. E., and Mahaffey, J. W. (1999) Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects. Evol. Dev. 1, 11–15.

    Article  PubMed  CAS  Google Scholar 

  9. Hughes, C. L. and Kaufman, T. C. (2000) RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus: novel roles for Hox genes in the hemipteran head. Development 127, 3683–3694.

    PubMed  CAS  Google Scholar 

  10. Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A., and Driscoll, M. (2000) Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genet. 24, 180–183.

    Article  PubMed  CAS  Google Scholar 

  11. Kennerdell, J. R. and Carthew, R. W. (2000) Heritable gene silencing in Drosophila using double-stranded RNA. Nature Biotechnol. 18, 896–898.

    Article  CAS  Google Scholar 

  12. Piccin, A., Salameh, A., Benna, C., et al. (2001) Efficient and heritable functional knock-out of an adult phenotype in Drosophila using a GAL4-driven hairpin RNA incorporating a heterologous spacer. Nucleic Acids Res. 29, E55–5.

    Article  PubMed  CAS  Google Scholar 

  13. Kalidas, S. and Smith, D. P. (2002) Novel genomic cDNA hybrids produce effective RNA interference in adult Drosophilia. Neuron 33, 177–184.

    Article  PubMed  CAS  Google Scholar 

  14. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

    Article  PubMed  CAS  Google Scholar 

  15. Caplen, N. J., Parrish, S., Imani, F., Fire, A., and Morgan, R. A. (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA 98, 9742–9747.

    Article  PubMed  CAS  Google Scholar 

  16. Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P., and Sharp, P. A. (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 13, 3191–3197.

    Article  PubMed  CAS  Google Scholar 

  17. Caplen, N. J., Fleenor, J., Fire, A., and Morgan, R. A. (2000) dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252, 95–105.

    Article  PubMed  CAS  Google Scholar 

  18. Oates, A. C., Bruce, A. E., and Ho, R. K. (2000) Too much interference: injection of double-stranded RNA has nonspecific effects in the zebrafish embryo. Dev. Biol. 224, 20–28.

    Article  PubMed  CAS  Google Scholar 

  19. Zhao, Z., Cao, Y., Li, M., and Meng, A. (2001) Double-stranded RNA injection produces nonspecific defects in zebrafish. Dev. Biol. 229, 215–223.

    Article  PubMed  CAS  Google Scholar 

  20. Hammond, S. M., Caudy, A. A., and Hannon, G. J. (2001) Post-transcriptional gene silencing by double-stranded RNA. Nat. Rev. Genet. 2, 110–119.

    Article  PubMed  CAS  Google Scholar 

  21. Carthew, R. W. (2001) Gene silencing by double-stranded RNA. Curr. Opin. Cell Biol. 13, 244–248.

    Article  PubMed  CAS  Google Scholar 

  22. Zamore, P. D. (2001) RNA interference: listening to the sound of silence. Nature Struct. Biol. 8, 746–750.

    Article  PubMed  CAS  Google Scholar 

  23. Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296.

    Article  PubMed  CAS  Google Scholar 

  24. Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

    Article  PubMed  CAS  Google Scholar 

  25. Nykanen, A., Haley, B., and Zamore, P. D. (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321.

    Article  PubMed  CAS  Google Scholar 

  26. Zamore, P. D., Tuschl, T., Sharp, P. A., and Bartel, D. P. (2002) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33.

    Article  Google Scholar 

  27. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R., and Hannon, G. J. (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150.

    Article  PubMed  CAS  Google Scholar 

  28. Fagard, M., Boutet, S., Morel, J. B., Bellini, C., and Vaucheret, H. (2000) AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc. Natl. Acad. Sci. USA 97, 11,650–11,654.

    Article  PubMed  CAS  Google Scholar 

  29. Catalanotto, C., Azzalin, G., Macino, G., and Cogoni, C. (2000) Gene silencing in worms and fungi. Nature 404, 245.

    Article  PubMed  CAS  Google Scholar 

  30. Tabara, H., Sarkissian, M., Kelly, W. G., et al. (1999) The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132.

    Article  PubMed  CAS  Google Scholar 

  31. Lipardi, C., Wei, Q., and Paterson, B. M. (2001) RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 107, 297–307.

    Article  PubMed  CAS  Google Scholar 

  32. Waterhouse, P. M., Wang, M. B., and Lough, T. (2001) Gene silencing as an adaptive defence against viruses. Nature 411, 834–842.

    Article  PubMed  CAS  Google Scholar 

  33. Aravin, A. A., Naumova, N. M., Tulin, A. V., Vagin, V. V., Rozovsky, Y. M., and Gvozdev, V. A. (2001) Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 11, 1017–1027.

    Article  PubMed  CAS  Google Scholar 

  34. Megraw, T. L., Kao, L. R., and Kaufman, T. C. (2001) Zygotic development without functional mitotic centrosomes. Curr. Biol. 11, 116–120.

    Article  PubMed  CAS  Google Scholar 

  35. Raff, J. W. (2001). Centrosomes: central no more? Curr. Biol. 11, R159–R161.

    Article  PubMed  CAS  Google Scholar 

  36. Megraw, T. L., Li, K., Kao, L. R., and Kaufman, T. C. (1999) The centrosomin protein is required for centrosome assembly and function during cleavage in Drosophila. Development 126, 2829–2839.

    PubMed  CAS  Google Scholar 

  37. Vaizel-Ohayon, D. and Schejter, E. D. (1999) Mutations in centrosomin reveal requirements for centrosomal function during early Drosophila embryogenesis. Curr. Biol. 9, 889–898.

    Article  PubMed  CAS  Google Scholar 

  38. Wei, Q., Marchler, G., Edington, K., Karsch-Mizrachi, I., and Paterson, B. M. (2000) RNA interference demonstrates a role for nautilus in the myogenic conversion of Schneider cells by daughterless. Dev. Biol. 228, 239–255.

    Article  PubMed  CAS  Google Scholar 

  39. Rozen, S and Skaletsky, H. J. (2002) Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology. (Krawetz, S. and Misener, S., eds.), Humana Press, Totowa, NJ, pp. 365–386.

    Google Scholar 

  40. Ausubel, F. M. (1987) Current Protocols in Molecular Biology, Greene Publishing, Brooklyn, NY.

    Google Scholar 

  41. Roux, K. H. (1995) Optimization and troubleshooting in PCR. PCR Methods Appl. 4, S185–S194.

    PubMed  CAS  Google Scholar 

  42. Cherbas, C. and Cherbas, P. (1998) Cell Culture, in Drosophila: A Practical Approach, 2nd ed. (Roberts, D. B., ed.), IRL/Oxford University Press, Oxford, pp. 319–338.

    Google Scholar 

  43. Bruick, R. K. and McKnight, S. L. (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Kao, LR., Megraw, T.L. (2004). RNAi in Cultured Drosophila Cells. In: Henderson, D.S. (eds) Drosophila Cytogenetics Protocols. Methods in Molecular Biology, vol 247. Humana Press. https://doi.org/10.1385/1-59259-665-7:443

Download citation

  • DOI: https://doi.org/10.1385/1-59259-665-7:443

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-050-2

  • Online ISBN: 978-1-59259-665-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics