Skip to main content

Conditional Transgenic Models to Study Chemokine Biology

  • Protocol
Cell Migration in Inflammation and Immunity

Abstract

Leukocyte migration is a crucial component of defense against many infections and in the pathogenesis of multiple inflammatory disorders. Therefore, the elucidation of the mechanisms responsible for leukocyte recruitment is critical for the development of novel therapeutic approaches for these conditions. Among the molecules implicated in regulating leukocyte trafficking are the chemokines, low-molecular-weight secreted molecules that interact with G-protein-coupled receptors. Evidence supporting an important role for chemokines in leukocyte migration derives from studies employing (1) in vitro chemotaxis assays (14), (2) in vivo chemotaxis assays involving administration of exogenous recombinant mediators into a body cavity (5), (3) animal models of disease (610), and (4) transgenic models (11). Although critical to our understanding of these processes, both in vitro and in vivo chemotaxis assays are limited because they do not fully reproduce the complex environment of healthy or diseased tissues. On the other hand, the myriad perturbations in the biochemical and physical microenvironment of diseased tissue, including the expression of multiple mediators, changes in the characteristics of resident cells, and the influx of inflammatory cells, make it difficult to discern the role of a single mediator. In this context, studies on genetically engineered mice are uniquely positioned to examine the biology of both ligands and receptors in the environment of the relevant tissue without the confounding influence of coexisting disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baggiolini, M., Walz, A., and Kunkel, S. L. (1989) Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J. Clin. Invest. 84, 1045–1049.

    Article  PubMed  CAS  Google Scholar 

  2. Richardson, M. D. and Patel, M. (1995) Stimulation of neutrophil phagocytosis of Aspergillus fumigatus conidia by interleukin-8 and N-formylmethionyl-leucylphenylalanine. J. Med. Vet. Mycol. 33, 99–104.

    Article  PubMed  CAS  Google Scholar 

  3. Thelen, M., Peveri, P., Kernen, P., von Tscharner, V., Walz, A., and Baggiolini, M. (1988) Mechanism of neutrophil activation by NAF, a novel monocyte-derived peptide agonist. FASEB J. 2, 2702–2706.

    PubMed  CAS  Google Scholar 

  4. Wolpe, S. D., Sherry, B., Juers, D., Davatelis, G., Yurt, R. W., and Cerami, A. (1989) Identification and characterization of macrophage inflammatory protein 2. Proc. Natl. Acad. Sci. USA 86, 612–616.

    Article  PubMed  CAS  Google Scholar 

  5. Bozic, C. R., Kolakowski, L. F. Jr., Gerard, N. P., et al. (1995) Expression and biologic characterization of the murine chemokine KC. J. Immunol. 154, 6048–6057.

    PubMed  CAS  Google Scholar 

  6. Broaddus, V. C., Boylan, A. M., Hoeffel, J. M., et al. (1994) Neutralization of IL-8 inhibits neutrophil influx in a rabbit model of endotoxin-induced pleurisy. J. Immunol. 152, 2960–2967.

    PubMed  CAS  Google Scholar 

  7. Greenberger, M. J., Strieter, R. M., Kunkel, S. L., et al. (1996) Neutralization of macrophage inflammatory protein-2 attenuates neutrophil recruitment and bacterial clearance in murine Klebsiella pneumonia. J. Infect. Dis. 173, 159–165.

    PubMed  CAS  Google Scholar 

  8. Huang, S., Paulauskis, J. D., Godleski, J. J., and Kobzik, L. (1992) Expression of macrophage inflammatory protein-2 and KC mRNA in pulmonary inflammation. Am. J. Pathol. 141, 981–988.

    PubMed  CAS  Google Scholar 

  9. Kooguchi, K., Hashimoto, S., Kobayashi, A., et al. (1998) Role of alveolar macrophages in initiation and regulation of inflammation in Pseudomonas aeruginosa pneumonia. Infect. Immun. 66, 3164–3169.

    PubMed  CAS  Google Scholar 

  10. Sekido, N., Mukaida, N., Harada, A., Nakanishi, I., Watanabe, Y., and Matsushima, K. (1993) Prevention of lung reperfusion injury in rabbits by a monoclonal antibody against interleukin-8. Nature 365, 654–657.

    Article  PubMed  CAS  Google Scholar 

  11. Lira, S. A. (1999) Lessons from gene modified mice. Forum (Genova) 9, 286–298.

    CAS  Google Scholar 

  12. Boring, L., Gosling, J., Chensue, S. W., et al. (1997) Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Invest. 100, 2552–2561.

    Article  PubMed  CAS  Google Scholar 

  13. Boring, L., Gosling, J., Cleary, M., and Charo, I. F. (1998) Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897.

    Article  PubMed  CAS  Google Scholar 

  14. Cook, D. N., Prosser, D. M., Forster, R., et al. (2000) CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 12, 495–503.

    Article  PubMed  CAS  Google Scholar 

  15. Forster, R., Mattis, A. E., Kremmer, E., Wolf, E., Brem, G., and Lipp, M. (1996) A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047.

    Article  PubMed  CAS  Google Scholar 

  16. Forster, R., Schubel, A., Breitfeld, D., et al. (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33.

    Article  PubMed  CAS  Google Scholar 

  17. Gao, J. L., Wynn, T. A., Chang, Y., et al. (1997) Impaired host defense, hematopoiesis, granulomatous inflammation and type 1-type 2 cytokine balance in mice lacking CC chemokine receptor 1. J. Exp. Med. 185, 1959–1968.

    Article  PubMed  CAS  Google Scholar 

  18. Gosling, J., Slaymaker, S., Gu, L., et al. (1999) MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J. Clin. Invest. 103, 773–778.

    Article  PubMed  CAS  Google Scholar 

  19. Gu, L., Okada, Y., Clinton, S. K., et al. (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell 2, 275–281.

    Article  PubMed  CAS  Google Scholar 

  20. Fuentes, M. E., Durham, S. K., Swerdel, M. R., et al. (1995) Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. J. Immunol. 155, 5769–5776.

    PubMed  CAS  Google Scholar 

  21. Grewal, I. S., Rutledge, B. J., Fiorillo, J. A., et al. (1997) Transgenic monocyte chemoattractant protein-1 (MCP-1) in pancreatic islets produces monocyte-rich insulitis without diabetes: abrogation by a second transgene expressing systemic MCP-1. J. Immunol. 159, 401–408.

    PubMed  CAS  Google Scholar 

  22. Gunn, M. D., Nelken, N. A., Liao, X., and Williams, L. T. (1997) Monocyte chemoattractant protein-1 is sufficient for the chemotaxis of monocytes and lymphocytes in transgenic mice but requires an additional stimulus for inflammatory activation. J. Immunol. 158, 376–383.

    PubMed  CAS  Google Scholar 

  23. Kolattukudy, P. E., Quach, T., Bergese, S., et al. (1998) Myocarditis induced by targeted expression of the MCP-1 gene in murine cardiac muscle. Am. J. Pathol. 152, 101–111.

    PubMed  CAS  Google Scholar 

  24. Lira, S. A., Zalamea, P., Heinrich, J. N., et al. (1994) Expression of the chemokine N51/KC in the thymus and epidermis of transgenic mice results in marked infiltration of a single class of inflammatory cells. J. Exp. Med. 180, 2039–2048.

    Article  PubMed  CAS  Google Scholar 

  25. Tani, M., Fuentes, M. E., Peterson, J. W., et al. (1996) Neutrophil infiltration, glial reaction, and neurological disease in transgenic mice expressing the chemokine N51/KC in oligodendrocytes. J. Clin. Invest. 98, 529–539.

    Article  PubMed  CAS  Google Scholar 

  26. Tanaka, Y., Imai, T., Baba, M., et al. (1999) Selective expression of liver and activation-regulated chemokine (LARC) in intestinal epithelium in mice and humans. Eur. J. Immunol. 29, 633–642.

    Article  PubMed  CAS  Google Scholar 

  27. D’Ambrosio, D., Iellem, A., Bonecchi, R., et al. (1998) Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J. Immunol. 161, 5111–5115.

    CAS  Google Scholar 

  28. Gossen, M., Bonin, A. L., and Bujard, H. (1993) Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends Biochem. Sci. 18, 471–475.

    Article  PubMed  CAS  Google Scholar 

  29. Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551.

    Article  PubMed  CAS  Google Scholar 

  30. Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769.

    Article  PubMed  CAS  Google Scholar 

  31. Furth, P. A., St. Onge, L., Boger, H., et al. (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. USA 91, 9302–9306.

    Article  PubMed  CAS  Google Scholar 

  32. Kistner, A., Gossen, M., Zimmermann, F., et al. (1996) Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl. Acad. Sci. USA 93, 10,933–10,938.

    Article  PubMed  CAS  Google Scholar 

  33. Urlinger, S., Baron, U., Thellmann, M., Hasan, M. T., Bujard, H., and Hillen, W. (2000) Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc. Natl. Acad. Sci. USA 97, 7963–7968.

    Article  PubMed  CAS  Google Scholar 

  34. Oquendo, P., Alberta, J., Wen, D. Z., Graycar, J. L., Derynck, R., and Stiles, C. D. (1989) The platelet-derived growth factor-inducible KC gene encodes a secretory protein related to platelet alpha-granule proteins. J. Biol. Chem. 264, 4133–4137.

    PubMed  CAS  Google Scholar 

  35. Ryseck, R. P., MacDonald-Bravo, H., Mattei, M. G., and Bravo, R. (1989) Cloning and sequence of a secretory protein induced by growth factors in mouse fibroblasts. Exp. Cell Res. 180, 266–275.

    Article  PubMed  CAS  Google Scholar 

  36. Wiekowski, M. T., Chen, S. C., Zalamea, P., et al. (2001) Disruption of neutrophil migration in a conditional transgenic model: evidence for CXCR2 desensitization in vivo. J. Immunol. 167, 7102–7110.

    PubMed  CAS  Google Scholar 

  37. Zullo, J. N., Cochran, B. H., Huang, A. S., and Stiles, C. D. (1985) Platelet-derived growth factor and double-stranded ribonucleic acids stimulate expression of the same genes in 3T3 cells. Cell 43, 793–800.

    Article  PubMed  CAS  Google Scholar 

  38. Suzuki, H., Prado, G. N., Wilkinson, N., and Navarro, J. (1994) The N terminus of interleukin-8 (IL-8) receptor confers high affinity binding to human IL-8. J. Biol. Chem. 269, 18,263–18,268.

    PubMed  CAS  Google Scholar 

  39. Lee, J., Cacalano, G., Camerato, T., Toy, K., Moore, M. W., and Wood, W. I. (1995) Chemokine binding and activities mediated by the mouse IL-8 receptor. J. Immunol. 155, 2158–2164.

    PubMed  CAS  Google Scholar 

  40. Cochran, B. H., Reffel, A. C., and Stiles, C. D. (1983) Molecular cloning of gene sequences regulated by platelet-derived growth factor. Cell 33, 939–947.

    Article  PubMed  CAS  Google Scholar 

  41. Harada, A., Kuno, K., Nomura, H., Mukaida, N., Murakami, S., and Matsushima, K. (1994) Cloning of a cDNA encoding a mouse homolog of the interleukin-8 receptor. Gene 142, 297–300.

    Article  PubMed  CAS  Google Scholar 

  42. Bozic, C. R., Gerard, N. P., von Uexkull-Guldenband, C., et al. (1994) The murine interleukin 8 type B receptor homologue and its ligands. Expression and biological characterization. J. Biol. Chem. 269, 29,355–29,358.

    PubMed  CAS  Google Scholar 

  43. Lira, S. A., Fuentes, M. E., Strieter, R. M., and Durham, S. K. (1997) Transgenic methods to study chemokine function in lung and central nervous system. Methods Enzymol. 287, 304–318.

    Article  PubMed  CAS  Google Scholar 

  44. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., and Nishimune, Y. (1997) “Green mice” as a source of ubiquitous green cells. FEBS Lett. 407, 313–319.

    Article  PubMed  CAS  Google Scholar 

  45. Manfra, D. J., Chen, S. C., Yang, T. Y., et al. (2001) Leukocytes expressing green fluorescent protein as novel reagents for adoptive cell transfer and bone marrow transplantation studies. Am. J. Pathol. 158, 41–47.

    Article  PubMed  CAS  Google Scholar 

  46. Kalmar, J. R. and Van Dyke, T. E. (1994) Effect of bacterial products on neutrophil chemotaxis. Methods Enzymol. 236, 58–87.

    Article  PubMed  CAS  Google Scholar 

  47. Van Zee, K. J., Fischer, E., Hawes, A. S., et al. (1992) Effects of intravenous IL-8 administration in nonhuman primates. J. Immunol. 148, 1746–1752.

    PubMed  Google Scholar 

  48. Hechtman, D. H., Cybulsky, M. I., Fuchs, H. J., Baker, J. B., and Gimbrone, M. A. Jr. (1991) Intravascular IL-8. Inhibitor of polymorphonuclear leukocyte accumulation at sites of acute inflammation. J. Immunol. 147, 883–892.

    PubMed  CAS  Google Scholar 

  49. Blackwell, T. S., Lancaster, L. H., Blackwell, T. R., Venkatakrishnan, A., and Christman, J. (1999) Chemotactic gradients predict neutrophilic alveolitis in endotoxin-treated rats. Am. J. Respir. Crit. Care Med. 159, 1644–1652.

    PubMed  CAS  Google Scholar 

  50. Simonet, W., Hughes, T., Nguyen, H., Trebasky, L., Danilenko, D., and Medlock, E. (1994) Long-term impaired neutrophil migration in mice overexpressing human interleuklin-8. J. Clin. Invest. 94, 1310–1319.

    Article  PubMed  CAS  Google Scholar 

  51. Rutledge, B. J., Rayburn, H., Rosenberg, R., et al. (1995) High level monocyte chemoattractant protein-1 expression in transgenic mice increases their susceptibility to intracellular pathogens. J. Immunol. 155, 4838–4843.

    PubMed  CAS  Google Scholar 

  52. Cacalano, G., Lee, J., Kikly, K., et al. (1994) Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science 265, 682–684.

    Article  PubMed  CAS  Google Scholar 

  53. McColl, S. R. and Clark-Lewis, I. (1999) Inhibition of murine neutrophil recruitment in vivo by CXC chemokine receptor antagonists. J. Immunol. 163, 2829–2835.

    PubMed  CAS  Google Scholar 

  54. Lukacs, N. W., Strieter, R. M., Chensue, S. W., and Kunkel, S. L. (1996) Activation and regulation of chemokines in allergic airway inflammation. J. Leukocyte Biol. 59, 13–17.

    PubMed  CAS  Google Scholar 

  55. Standiford, T. J. (1997) Cytokines and pulmonary host defenses. Curr. Opin. Pulm. Med. 3, 81–88.

    Article  PubMed  CAS  Google Scholar 

  56. Griffiths-Johnson, D. A., Collins, P. D., Jose, P. J., and Williams, T. J. (1997) Animal models of asthma: role of chemokines. Methods Enzymol. 288, 241–266.

    Article  PubMed  CAS  Google Scholar 

  57. Mehrad, B., Wiekowski, B. E., Morrison, S. C., et al. (2002) Transient lung-specific expression of the chemokine KC improves outcome in invasive aspergillosis. Am. J. Respir. Crit. Care Med. 166, 1263–1268.

    Article  PubMed  Google Scholar 

  58. Stripp, B. R., Sawaya, P. L., Luse, D. S., et al. (1992) Cis-acting elements that confer lung epithelial cell expression of the CC10 gene. J. Biol. Chem. 267, 14,703–14,712.

    PubMed  CAS  Google Scholar 

  59. Sawaya, P. L., Stripp, B. R., Whitsett, J. A., and Luse, D. S. (1993) The lung-specific CC10 gene is regulated by transcription factors from the AP-1, octamer, and hepatocyte nuclear factor 3 families. Mol. Cell. Biol. 13, 3860–3871.

    PubMed  CAS  Google Scholar 

  60. Frevert, C. W., Huang, S., Danaee, H., Paulauskis, J. D., and Kobzik, L. (1995) Functional characterization of the rat chemokine KC and its importance in neutrophil recruitment in a rat model of pulmonary inflammation. J. Immunol. 154, 335–344.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Lira, S.A. et al. (2004). Conditional Transgenic Models to Study Chemokine Biology. In: D’Ambrosio, D., Sinigaglia, F. (eds) Cell Migration in Inflammation and Immunity. Methods in Molecular Biology™, vol 239. Humana Press. https://doi.org/10.1385/1-59259-435-2:105

Download citation

  • DOI: https://doi.org/10.1385/1-59259-435-2:105

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-102-8

  • Online ISBN: 978-1-59259-435-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics