Skip to main content

Chromosome-Based Vectors for Mammalian Cells

An Overview

  • Protocol
Mammalian Artificial Chromosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 240))

  • 337 Accesses

Abstract

The functional organization of the eukaryotic chromosome was first elucidated at a molecular level in the budding yeast, Saccharomyces cerevisiae, providing the basis for the successful creation of yeast artificial chromosomes (YACs) (1). The structures that confer chromosome function have been far more difficult to determine in multicellular eukaryotes, both because of their greater complexity and size. Over the last decade, various strategies have been developed for creating engineered human/mammalian chromosomes. These fall into two broad categories: the use of naked DNA containing sequences capable of de novo chromosome formation (the “bottom-up” approach) or the manipulation and modification of existing chromosomes (the “top-down” approach). In this review, we will refer to chromosomes formed from naked input DNA as artificial chromosomes (ACs) and those produced from existing chromosomes as mini- or derivative-chromosomes (depending on their final size).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray, A.W. and Szostak, J.W. (1983) Construction of artificial chromosomes in yeast. Nature 305, 189–193.

    Article  PubMed  CAS  Google Scholar 

  2. Kipling, D. (ed.) (1995) The Telomere. OUP, Oxford.

    Google Scholar 

  3. Farr, C., Fantes, J., Goodfellow, P., and Cooke, H. (1991) Functional reintroduction of human telomeres into mammalian cells. Proc. Natl. Acad. Sci. USA 88, 7006–7010.

    Article  PubMed  CAS  Google Scholar 

  4. Barnett, M. A., Buckle, V. J., Evans, E. P., Porter, A. C. G., Rout, D., Smith, A. G., et al. (1993) Telomere directed fragmentation of mammalian chromosomes. Nucleic Acids Res. 21, 27–36.

    Article  PubMed  CAS  Google Scholar 

  5. Hanish, J.P., Yanowitz, J. L., and de Lange, T. (1994) Stringent sequence requirements for the formation of human telomeres. Proc. Natl. Acad. Sci. USA 91, 8861–8865.

    Article  PubMed  CAS  Google Scholar 

  6. Gilbert, D. M. (2001) Making sense of eukaryotic DNA replication origins. Science 294, 96–100.

    Article  PubMed  CAS  Google Scholar 

  7. Choo, K. H. A. (ed.) (1997) The Centromere. OUP, Oxford.

    Google Scholar 

  8. Oakey, R. and Tyler-Smith, C. (1990) Y chromosome DNA haplotyping suggests that most European and Asian men are descended from one of two males. Genomics 7, 325–330.

    Article  PubMed  CAS  Google Scholar 

  9. Mahtani, M. M. and Willard, H. F. (1998) Physical and genetic mapping of the human X chromosome centromere: repression of recombination. Genome Res. 8, 100–110.

    PubMed  CAS  Google Scholar 

  10. Lo, A. W. I., Liao, G. C. C, Rocchi, M., and Choo, K. H. A. (1999) Extreme reduction of chromosome-specific α-satellite array is unusually common in human chromosome 21. Genome Res. 9, 895–908.

    Article  PubMed  CAS  Google Scholar 

  11. Choo, K. H. (2000) Centromerization. Trends Cell Biol. 10, 182–188.

    Article  PubMed  CAS  Google Scholar 

  12. Warburton, P. E. (2001) Epigenetic analysis of kinetochore assembly on variant human centromeres. Trends Genet. 17, 243–247.

    Article  PubMed  CAS  Google Scholar 

  13. Harrington, J. J., Van Bokkelen, G., Mays, R. W., Gustashaw, K., and Willard, H. F. (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat. Genet. 15, 345–355.

    Article  PubMed  CAS  Google Scholar 

  14. Ikeno, M., Grimes, B., Okazaki, T., Nakano, M., Saitoh, K., Hoshino, H., et al. (1998) Construction of YAC-based mammalian artificial chromosomes. Nat. Biotech. 16, 431–439.

    Article  CAS  Google Scholar 

  15. Henning, K., Novotny, E., Compton, S., Guan, X., Liu, P., and Ashlock, M. (1999) Human artificial chromosomes generated by modification of a yeast artificial chromosome containing both human alpha satellite and single-copy DNA sequences. Proc. Natl. Acad. Sci. USA 96, 592–597.

    Article  PubMed  CAS  Google Scholar 

  16. Masumoto, H., Ikeno, M., Nakano, M., Okazaki, T., Grimes, B., Cooke, H., and Suzuki, N. (1999) Assay of centromere function using a human artificial chromosome. Chromosoma 107, 406–416.

    Article  Google Scholar 

  17. Ebersole, T., Ross, A., Clark, E., McGill, N., Schindelhauer, D., Cooke, H., and Grimes, B. (2000) Mammalian artificial chromosome formation from circular alphoid input DNA does not require telomere repeats. Hum. Mol. Genet. 9, 1623–1631.

    Article  PubMed  CAS  Google Scholar 

  18. Schueler, M. G., Higgins, A. W., Rudd, M. K., Gustashaw, K., and Willard, H. F. (2001) Genomic and genetic definition of a functional human centromere. Science 294, 109–115.

    Article  PubMed  CAS  Google Scholar 

  19. Mejia, J. E., Alazami, A., Willmott, A., Marschall, P., Levy, E., Earnshaw, W. C, and Larin, Z. (2002) Efficiency of de novo centromere formation in human artificial chromosomes. Genomics 79, 297–304.

    Article  PubMed  CAS  Google Scholar 

  20. Ohzeki, J.-I., Nakano, M., Okada, T., and Masumoto, H. (2002) CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol. 159, 765–775.

    Article  PubMed  CAS  Google Scholar 

  21. Kouprina, N., Ebersole, T., Koriabine, M., Pak, E., Rogozin, I. B., Katoh, M., et al. (2003) Cloning of human centromeres by transformation-associated recombination in yeast and generation of functional human artificial chromosomes. Nucleic Acids Res. 31, 922–934.

    Article  PubMed  CAS  Google Scholar 

  22. Hudson, D. F., Fowler, K. J., Earle, E., Saffery, R., Kalitsis, P., Trowell, H., et al. (1998) Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J. Cell Biol. 141, 309–319.

    Article  PubMed  CAS  Google Scholar 

  23. Kapoor, M., {mnMontes de Oca Luna}, R., Liu, G., Lozano, G., Cummings, C., Mancini, M., et al. (1998) The cenpB gene is not essential in mice. Chromosoma. 107, 570–576.

    Article  PubMed  CAS  Google Scholar 

  24. Perez-Castro, A. V., Shamanski, F. L., Meneses, J. J., Lovato, T. L., Vogel, K. G., Moyzis, R. K., and Pedersen, R. (1998) Centromeric protein B null mice are viable with no apparent abnormalities. Dev. Biol. 32, 135–143.

    Article  Google Scholar 

  25. Tomascik-Cheeseman, L., Marchetti, F., Lowe, X., Shamanski, F. L., Nath, J., Pedersen, R. A., and Wyrobek, A. J. (2002) CENP-B is not critical for meiotic chromosome segregation in male mice. Mutat. Res. 513, 197–203.

    PubMed  CAS  Google Scholar 

  26. Goldberg, I. G., Sawhney, H., Pluta, A. F., Warburton, P. E., and Earnshaw, W. C. (1996) Surprising deficiency of CENP-B binding sites in African green monkey alphα-satellite DNA: implications for CENP-B function at centromeres. Mol. Cell Biol. 16, 5156–5168.

    PubMed  CAS  Google Scholar 

  27. Yoda, K., Nakamura, T., Masumoto, H., Suzuki, N., Kitagawa, K., Nakano, M., et al. (1996) Centromere protein B of African green monkey cells: gene structure, cellular expression, and centromeric localization. Mol. Cell Biol. 16, 5169–5177.

    PubMed  CAS  Google Scholar 

  28. Barry, A. E., Bateman, M. A., Howman, E. V., Cancilla, M. R., Tainton, K. M., Irvine, D. V., et al. (2000) The 10q25 neocentromere and its inactive progenitor have identical primary nucleotide sequence: Further evidence for epigenetic modification. Genome Res. 10, 832–838.

    Article  PubMed  CAS  Google Scholar 

  29. Saffery, R., Irvine, D. V., Griffiths, B., Kalitsis, P., Wordeman, L., and Choo, K. H. (2000) Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins. Hum. Mol. Genet. 9, 175–185.

    Article  PubMed  CAS  Google Scholar 

  30. Ando, S., Yang, H., Nozaki, N., Okazaki, T., and Yoda, K. (2002) CENP-A,-B, and-C chromatin complex that contains the I-type alphα-satellite array constitutes the prekinetochore in HeLa cells. Mol. Cell Biol. 22, 2229–2241.

    Article  PubMed  CAS  Google Scholar 

  31. Grimes, B. R., Schindelhauer, D., McGill, N. I., Ross, A., Ebersole, T. A., and Cooke, H. J. (2001) Stable gene expression from a mammalian artificial chromosome. EMBO Rep. 2, 910–914.

    Article  PubMed  CAS  Google Scholar 

  32. Farr, C. J. Chromosome fragmentation in vertebrate cell lines, in Chromosome Structural Analysis, (Bickmore, W. A., ed.), OUP, Oxford, 1999, pp. 183–198.

    Google Scholar 

  33. Farr, C. J., Stevanovic, M., Thomson, E. J., Goodfellow, P. N., and Cooke, H. J. (1992) Telomere-associated chromosome fragmentation: applications in genome manipulation and analysis. Nat. Genet. 2, 275–282.

    Article  PubMed  CAS  Google Scholar 

  34. Au, H. C., Mascarello, J. T., and Scheffler, I. E. (1999) Targeted integration of a dominant neo(R) marker into a 2 to 3 Mb human minichromosome and transfer between cells. Cytogenet. Cell Genet. 86, 194–203.

    Article  PubMed  CAS  Google Scholar 

  35. Hernandez, D., Mee, P. J., Martin, J. E., Tybulewicz, V. L., and Fisher, E. M. (1999) Transchromosomal mouse embryonic stem cell lines and chimeric mice that contain freely segregating segments of human chromosome 21. Hum. Mol. Genet. 8, 923–933.

    Article  PubMed  CAS  Google Scholar 

  36. Moralli, D., Vagnarelli, P., Bensi, M., De Carli, L., and Raimondi, E. (2001) Insertion of a loxP site in a size-reduced human accessory chromosome. Cytogenet. Cell Genet. 9, 113–120.

    Article  Google Scholar 

  37. Buerstedde, J.-M. and Takeda, S. (1991) Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 67, 179–188.

    Article  PubMed  CAS  Google Scholar 

  38. Dieken, E. S., Epner, E. M., Fiering, S., Fournier, R. E. K., and Groudine, M. (1996) Efficient modification of human chromosomal alleles using recombination-proficient chicken/human microcell hybrids. Nat. Genet. 12, 174–182.

    Article  PubMed  CAS  Google Scholar 

  39. Dieken, E. S. and Fournier, R. E. K. (1996) Homologous modification of human Chromosomal genes in chicken B-cell x human microcell hybrids, in Methods (Fournier, R. E.K., ed.), AP, San Diego, 1996, pp. 56–63.

    Google Scholar 

  40. Koi, M., Lamb, P. W., Filatov, L., Feinberg, A. P., and Barrett, J. C. (1997) Construction of chicken-human microcell hybrids for human gene targeting. Cytogenet. Cell Genet. 76, 72–76.

    Article  PubMed  CAS  Google Scholar 

  41. Kuroiwa, Y., Shinohara, T., Notsu, T., Tomizuka, K., Yoshida, H., Takeda, S.-i., et al. (1998) Efficient modification of a human chromosome by telomere-directed truncation in high homologous recombination-proficient chicken DT40 cells. Nucleic Acids Res. 26, 3447–3448.

    Article  PubMed  CAS  Google Scholar 

  42. Shen, M. H., Yang, Y., Loupart, M.-L., Smith, A., and Brown, W. (1997) Human mini-chromosomes in mouse embryonal stem cells. Hum. Mol. Genet. 6, 1375–1382.

    Article  PubMed  CAS  Google Scholar 

  43. Farr, C. J., Bayne, R. A. L., Kipling, D., Mills, W., Critcher, R., and Cooke, H. J. (1995) Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation. EMBO J. 14, 5444–5454.

    PubMed  CAS  Google Scholar 

  44. Mills, W., Critcher, R., Lee, C., and Farr, C. (1999) Generation of an ∼2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation. Hum Mol Genet. 8, 751–761.

    Article  PubMed  CAS  Google Scholar 

  45. Shen, M. H., Mee, P. J., Nichols, J., Yang, J., Brook, F., Gardner, R. L., et al. (2000) A structurally defined mini-chromosome vector for the mouse germ line. Curr. Biol. 10, 31–34.

    Article  PubMed  CAS  Google Scholar 

  46. Yang, J., Pendon, C., Yang, J., Haywood, N., Chand, A., and Brown, W. R. (2000) Human mini-chromosomes with minimal centromeres. Hum. Mol. Genet. 9, 1891–1902.

    Article  PubMed  CAS  Google Scholar 

  47. Saffery, R., Wong, L. H., Irvine, D. V., Bateman, M. A., Griffiths, B., Cutts, S. M., et al. (2001) Construction of neocentromere-based human minichromosomes by telomere-associated chromosomal truncation. Proc. Natl. Acad. Sci. USA 98, 5705–5710.

    Article  PubMed  CAS  Google Scholar 

  48. Spence, J. M., Critcher, R., Ebersole, T. A., Valdivia, M. M., Earnshaw, W. C., Fukagawa, T., Farr, C. J. (2000) Co-localization of centromere activity, proteins and topoismerase II within a subdomain of the major human X alphα-satellite array. EMBO J. 21, 5269–5280.

    Article  Google Scholar 

  49. Kereso, J., Praznovszky, T., Cserpan, I., Fodor, K., Katona, R., Csonka, E., et al. (1996) De novo chromosome formation by large scale amplification of the centromeric region of mouse chromosomes. Chrom. Res. 4, 226–239.

    Article  PubMed  CAS  Google Scholar 

  50. Csonka, E., Cserpan, I., Fodor, K., Hollo, G., Katona, R., Kereso, J., et al. (2000) Novel generation of human satellite DNA-based artificial chromosomes. J. Cell Sci. 113, 3207–3216.

    PubMed  CAS  Google Scholar 

  51. Raimondi, E., Balzaretti, M., Moralli, D., Vagnarelli, P., Tredici, F., Bensi, M., et al. (1996) Gene targeting to the centromeric DNA of a human minichromosome. Hum. Gene Ther. 7, 1103–1109.

    Article  PubMed  CAS  Google Scholar 

  52. Guiducci, C., Ascenzioni, F., Auriche, C., Piccolella, E., Guerrini, A., and Donini, P. (1999) Use of a human minichromosome as a cloning and expression vector for mammalian cells. Hum. Mol. Genet. 8, 1417–1424.

    Article  PubMed  CAS  Google Scholar 

  53. Vanderbyl, S., MacDonald, N., and De Jong, G. (2001) A flow cytometry technique for measuring chromosome-mediated gene transfer. Cytometry 44, 100–105.

    Article  PubMed  CAS  Google Scholar 

  54. Co, D., Borowski, A., Leung, J., van der Kaa, J., Hengst, S., Platenburg, G., et al. (2000) Generation of transgenic mice and germline transmission of a mammalian artificial chromosome introduced into embryos by pronuclear microinjection. Chrom. Res. 8, 183–191.

    Article  PubMed  CAS  Google Scholar 

  55. Bayne, R. A. L., Broccoli, D., Taggart, M. H., Thomson, E. J., Farr, C. J., and Cooke, H. J. (1994) Sandwiching of a gene within 12 kb of a functional telomere and alpha satellite does not result in silencing. Hum. Mol. Genet. 3, 539–546.

    Article  PubMed  CAS  Google Scholar 

  56. Mejia, J. E., Willmott, A., Levy, E., Earnshaw, W. C., and Larin, Z. (2001) HAC-mediated rescue of HPRT deficiency. Am. J. Hum. Genet. 69, 315–326.

    Article  PubMed  CAS  Google Scholar 

  57. Tomizuka, K., Yoshida, H., Uejima, H., Kugoh, H., K., S., Ohguma, A., Hayasaka, M., et al. (1997) Functional expression and germline transmission of a human chromsome fragment in chimaeric mice. Nat. Genet. 16, 133–143.

    Article  PubMed  CAS  Google Scholar 

  58. Kazuki, Y., Shinohara, T., Tomizuka, K., Katoh, M., Ohguma, A., Ishida, I., et al. (2001) Germline transmission of a transferred human chromosome 21 fragment in transchromosomal mice. J. Hum. Genet. 46, 600–603.

    Article  PubMed  CAS  Google Scholar 

  59. Shinohara, T., Tomizuka, K., Miyabara, S., Takehara, S., Kazuki, Y., Inoue, J., et al. (2001) Mice containing a human chromosome 21 model behavioral impairment and cardiac anomalies of Down’s syndrome. Hum. Mol. Genet. 10, 1163–1175.

    Article  PubMed  CAS  Google Scholar 

  60. Voet, T., Vermeesch, J., Carens, A., Durr, J., Labaere, C., Duhamel, H., et al. (2001) Efficient male and female germline transmission of a human chromosomal vector in mice. Genome Res. 11, 124–136.

    Article  PubMed  CAS  Google Scholar 

  61. Kuroiwa, Y., Tomizuka, K., Shinohara, T., Kazuki, Y., Yoshida, H., Ohguma, A., et al. (2000) Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts. Nat. Biotech. 18, 1086–1090.

    Article  CAS  Google Scholar 

  62. Kuroiwa, Y., Kasinathan, P., Choi, Y. J., Naeem, R., Tomizuka, K., Sullivan, E. J., et al. (2002) Cloned transchromosomic calves producing human immunoglobulin. Nat. Biotech. 20, 889–894.

    Article  CAS  Google Scholar 

  63. Shen, M., Yang, J., Pendon, C., and Brown, W. (2001) The accuracy of segregation of human mini-chrommosomes varies in different vertebrate cell lines, correlates with the extent of centromere formation and provides evidence for a trans-acting centromere maintenance activity. Chromosoma 109, 524–535.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Lim, H.N., Farr, C.J. (2004). Chromosome-Based Vectors for Mammalian Cells. In: Sgaramella, V., Eridani, S. (eds) Mammalian Artificial Chromosomes. Methods in Molecular Biology, vol 240. Humana Press. https://doi.org/10.1385/1-59259-434-4:167

Download citation

  • DOI: https://doi.org/10.1385/1-59259-434-4:167

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-096-0

  • Online ISBN: 978-1-59259-434-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics