Telomere Length Analysis and In Vitro Telomerase Assay

  • Fiorentina Ascenzioni
  • Pier Assunta Fradiani
  • Pierluigi Donini
Part of the Methods in Molecular Biology book series (MIMB, volume 240)


Barring exceptional instances, the DNA contained in eukaryotic chromosomes is linear. Linearity of the chromosomal DNA and the compartmentalized architecture of the eukaryotic cell are the two principle features that distinguish the prokaryotes from the eukaryotes and that have facilitated the evolution of totally different strategies for interaction with other species and the environment. Major changes in strategy that were made possible by linearity of chromosomes were an enormous increase in the information content of the genome and the development of sexuality as a means for efficient exchange of genetic information (1). But linear chromosomes have ends, and the presence of ends produced two major biological problems. One problem was identified early by Muller (2,3) and by McClintock (4), as the requirement to protect natural ends of chromosomes from fusion and recombination with other chromosomes and from exonucleolytic erosion. It was thus recognized that the ends of chromosomes must have specialized structural and functional features required for chromosome stability. We know today that another potential cause of chromosomal instability that must be dealt with is that unless it is protected, a DNA end will be recognized as damaged DNA that the cell will attempt to heal with ensuing loss of chromosome integrity and cell viability.


Telomere Length Ataxia Telangiectasia Mutate Telomeric Repeat Telomeric Sequence Telomeric Repeat Amplification Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ishikawa, F. and Naito, T. (1999) Why do we have linear chromosomes? A matter of Adam and Eve. Mutat. Res. 434, 99–107.PubMedGoogle Scholar
  2. 2.
    Muller, H. J. (1938) The remaking of chromosomes. Collect. Net. 8, 182–195.Google Scholar
  3. 3.
    Muller, H. J. (1940) An analysis of the process of structural change in the chromosomes of Drosophila. J. Genet. 40, 1–66.CrossRefGoogle Scholar
  4. 4.
    McClintock, B. (1939) The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc. Natl. Acad. Sci. USA 25, 405–416.PubMedCrossRefGoogle Scholar
  5. 5.
    Wright, J. H., Gottschling, D. E., and Zakian, V. A. (1992) Saccharomyces telomeres assume a nonnucleosomal chromatin structure. Genes. Dev. 6, 197–210.PubMedCrossRefGoogle Scholar
  6. 6.
    Blackburn, E. H. and Gall, J. G. (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J. Mol. Biol. 120, 33–53.PubMedCrossRefGoogle Scholar
  7. 7.
    Klobutcher, L. A., Swanton, M. T., Donini, P., and Prescott, D. M. (1981) All gene-sized DNA molecules in four species of hypotrichs have the same terminal sequence and an unusual 3′ terminus. Proc. Natl. Acad. Sci. USA 78, 3015–3019.PubMedCrossRefGoogle Scholar
  8. 8.
    Lundblad, V. and Blackburn, H. (1993) An alternative pathway for yeast telomere maintenance rescues est1-senescence. Cell 73, 347–360.PubMedCrossRefGoogle Scholar
  9. 9.
    McEachern, M. J. and Blackburn, H. (1996) Cap-prevented recombination between terminal telomeric repeat arrays (telomere CPR) maintains telomeres in Kluyveromyces lactis lacking telomerase. Genes Dev. 10, 1822–1834.PubMedCrossRefGoogle Scholar
  10. 10.
    Yeager, T. R., Neumann, A. A., Englezou, A., Huschtscha, L. I., Noble, J. R. et al. (1999) Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res. 59, 4175–4179.PubMedGoogle Scholar
  11. 11.
    Saiga, H. and Edstrom, J. E. (1985) Long tandem arrays of complex repeat units in Chironomus telomeres. EMBO J. 79, 315–328.Google Scholar
  12. 12.
    Roth, C. W., Kobeski, F., Walter, M. F., and Biessmann, H. (1997) Chromosome end elongation by recombination in the mosquito Anopheles gambiae. Mol. Cell. Biol. 17, 5176–5183.PubMedGoogle Scholar
  13. 13.
    Gottschling, D. E. and Cech, T. R. (1984) Chromatin structure of the molecular ends of Oxytricha macronuclear DNA: phased nucleosomes and a telomeric complex. Cell 38, 501–510.PubMedCrossRefGoogle Scholar
  14. 14.
    Gottschling, D. E. and Zakian, V. A. (1986) Telomere proteins: Specific recognition and protection of the natural termini of Oxytricha macronuclear DNA. Cell 47, 195–205.PubMedCrossRefGoogle Scholar
  15. 15.
    Pennock, E., Buckley, K. and Lundblad, V. (2001) Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104, 387–396.PubMedCrossRefGoogle Scholar
  16. 16.
    Grandin, N., Damon, C. and Charbonneau, M. (2001) Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J. 20, 1173–1183.PubMedCrossRefGoogle Scholar
  17. 17.
    Baumann, P. and Cech, T. R. (2001) Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175.PubMedCrossRefGoogle Scholar
  18. 18.
    Berman, J. and Tachibana, C. Y. (1986) Identification of a telomere-binding activity from yeast. Proc. Natl. Acad. Sci. USA 83, 3713–3717.PubMedCrossRefGoogle Scholar
  19. 19.
    Larson, G. P., Castanotto, D., Rossi, J. J. and Malafa, M. P. (1994) Isolation and functional analysis of a Kluyveromyces lactis RAP1 homologue. Gene 150, 35–41.PubMedCrossRefGoogle Scholar
  20. 20.
    Bilaud, T., Brun, C., Ancelin, K., Koering, C. E., Laroche, T. and Gilson, E. (1997) Telomeric localization of TRF2, a a novel human telobox protein. Nat. Genet. 17, 236–239.PubMedCrossRefGoogle Scholar
  21. 21.
    Broccoli, D., Smogorzewska, A., Chong, L., and De Lange, T. (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat. Genet. 17, 231–235.PubMedCrossRefGoogle Scholar
  22. 22.
    Ferreira, M. and Cooper, J. (2001) The fission yeast Taz1 protein protects chromosomes from Ku-dependent end-to-end fusion. Mol. Cell 7, 55–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Griffith, J. D., Comeau L., Rosenfield, S., Stansel R. M., Bianchi A., Moss, H., et al. (1999) Mammalian telomeres end in a large duplex loop. Cell 97, 503–514.PubMedCrossRefGoogle Scholar
  24. 24.
    Marcand, S., Wotton, D., Gilson, E. and Shore, D. (1997) Rap1p and telomere length regulation in yeast. Ciba Found. Symp. 211, 76–93.PubMedGoogle Scholar
  25. 25.
    Smogorzewska, A., van Steensel, B., Bianchi, A., Oelmann, S., Schaefer, M. R., et al. (2000) Control of human telomere length by TRF1 and TRF2. Mol. Cell. Biol. 20, 1659–1668.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee, H. W., Blasco, M. A., Gottlieb, G. J., Horner, J. W. II, Greider, C. W. and Harley, C. B. (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 362, 569–574.Google Scholar
  27. 27.
    Lustig, A. J. (1998) Mechanisms of silencing in Saccharomyces cerevisiae. Curr. Opin. Genet. Dev. 8, 233–239.PubMedCrossRefGoogle Scholar
  28. 28.
    Galy, V., Olivo-Merin, J. C., Scherthan, H., Doye V., Rascalou, N. and Nehrbass, U. (2000) Nuclear pore complexes in the organization of silent telomeric chromatin. Nature 403, 108–112.PubMedCrossRefGoogle Scholar
  29. 29.
    Feuerbach, F., Galy, V., Sticken, E. T., Fromont-Racine, M., Jacquier, A., Gilson, E., et al. (2002) Nuclear architecture and spatial positioning help establish transcriptional states of telomeres in yeast. Nat. Cell Biol. 4, 214–221.PubMedCrossRefGoogle Scholar
  30. 30.
    Bass, H. W., Riera-Lizarazu, O., Ananiev, E. V., Bordoli, S. J., Rines, H. W., Phillips, R. L., et al. (2000) Evidence for the coincident initiation of homolog pairing and synapsis during the telomere clustering (bouquet) stage of meiotic prophase. J. Cell Sci. 113, 1033–1042.PubMedGoogle Scholar
  31. 31.
    Loidl, J. (1990) The initiation of meiotic chromosome pairing: the cytological view. Genome 33, 759–778.PubMedGoogle Scholar
  32. 32.
    Cooper, J. P. (2000) Telomere transitions in yeast: the end of the chromosome as we know it. Curr. Opin. Genet Dev. 10, 169–177.PubMedCrossRefGoogle Scholar
  33. 33.
    Nimmo, E. R., Pidoux, A. L., Perry, P. E., and Allshire, R. C. (1998) Defective meiosis in telomere-silencing mutants of Schizosac-charomyces pombe. Nature 392, 825–828.PubMedCrossRefGoogle Scholar
  34. 34.
    Lingner, J., Cech, T. R., Hughes, T. R. and Lundblad, V. (1997) Three ever shorter telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc. Natl. Acad. Sci. USA 94, 11,190–11,195.PubMedCrossRefGoogle Scholar
  35. 35.
    Nugent, C. I., Hughes, T. R., Lue, N. F., and Lundblad, V. (1996) Cdc13p: a single-strand telomeric DNA-binding protein with dual role in yeast telomere maintenance. Science 274, 249–252.PubMedCrossRefGoogle Scholar
  36. 36.
    Chan, S. W., Chang, J., Prescott, J., and Blackburn, E. H. (2001) Altering telomere structure allows telomerase to act in yeast lacking ATM kinases. Curr Biol. 11, 1240–1250.PubMedCrossRefGoogle Scholar
  37. 37.
    Kishi, K. and Lu, P. L. (2002) A critical role for Pin2/TRF1 in ATM-dependent regulation. J. Biol. Chem. 277, 7420–7429.PubMedCrossRefGoogle Scholar
  38. 38.
    Forsyth, N. R., Wright, W. E and Shay, J. W. (2002) Telomerase and differentiation in multicelluar organisms: turn it off, turn it on, and turn it off again. Differentiation 69, 188–197.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhou, X. Z. and Lu, K. P. (2001) The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell 107, 347–359.PubMedCrossRefGoogle Scholar
  40. 40.
    Shen, Z.Y., Xu, L.Y., Li, C., Cai, W. J., Shen, J., Chen, J. Y., and Zeng, Y. (2001) A comparative study of telomerase activity and malignant phenotype in multistage carcinogenesis of esophageal epithelial cells induced by human papillomavirus. Int. J. Mol. Med. 8, 633–639.PubMedGoogle Scholar
  41. 41.
    Muller, M. (2002) Telomerase: its clinical relevance in the diagnosis in bladder cancer. Oncogene 21, 650–655.PubMedCrossRefGoogle Scholar
  42. 42.
    Corey, D. R. (2002) Telomerase inhibition, oligonucleotides, and clinical trials. Oncogene 21, 631–637.PubMedCrossRefGoogle Scholar
  43. 43.
    Ito, H., Kio, S., Kanaya, T., Takakura, M., Inoue, M., and Namiki, M. (1998) Expression of human telomerase subunits and correlation with telomerase activity in urothelial cancer. Clin. Cancer. Res. 4, 1603–1608.PubMedGoogle Scholar
  44. 44.
    de Kok, J. B., Schalken, J. A., Aalders, T. W., Ruers, T.J., Willelms, H. L., and Swinkels, D. W. (2000) Quantitative measurement of telomerase reverse transcriptase (hTERT) mRNA in urothelial cell carcinomas. Int. J. Cancer 87, 217–220.PubMedCrossRefGoogle Scholar
  45. 45.
    Nakamura, T. M, Morin, G. B., Chapman, K. B., Weinrich, S. L., Andrews, W. H., Lingner, J., et al. (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959.PubMedCrossRefGoogle Scholar
  46. 46.
    Prescot, J. and Blackburn, E. H. (1997) Functionally interacting telomerase RNAs in the yeast telomerase complex. Genes Dev. 11, 2790–800.CrossRefGoogle Scholar
  47. 47.
    Lee, M. S. and Blackburn, E. H. (1993) Sequence-specific DNA primer effects on telomerase polymarization activity. Mol. Cell. Biol. 13, 6586–6599.PubMedGoogle Scholar
  48. 48.
    Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C.B., West, M. D., Ho, P. L., et al. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015.PubMedCrossRefGoogle Scholar
  49. 49.
    Greider, C. W. and Blackburn, E., H. (1987) The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell. 51, 887–898.PubMedCrossRefGoogle Scholar
  50. 50.
    Cohn, M. and Blackburn, H. E. (1995) Telomerase in yeast. Science 269, 396–400.PubMedCrossRefGoogle Scholar
  51. 51.
    Counter, C. M., Meyerson, M., Eaton, E. N. and Weinberg, R. A. (1997) The catalytic subunit of yeast telomerase. Proc. Natl. Acad. Sci. USA 94, 9202–9207.PubMedCrossRefGoogle Scholar
  52. 52.
    Sambrook, J. and Russell, D. W. (2001) Molecular Cloning, a laboratory manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  53. 53.
    Meyne, J., Baker, R. J., Hobart, H. H., Hsu, T. C., Ryder, O. A., Ward, O. G., et al. (1990) Distribution of non-telomeric sites of the (TTAGGG)n in telomeric sequence in vertebrate chromosomes. Chromosoma 99, 3–10.PubMedCrossRefGoogle Scholar
  54. 54.
    Faravelli, M., Azzalin, C. M., Bertoni, L., Chernova O., Mondello, C., and Giulotto, E. (2002) Molecular organization of internal telomeric sequences in Chinese hamster chromosomes. Gene 283, 11–16.PubMedCrossRefGoogle Scholar
  55. 55.
    Poon, S. S. S., Martens, U. M., Ward, R. K., Lansdorp, P. M. (1999) Telomere length measurements using digital fluorescence microscopy. Cytometry 36, 267–278.PubMedCrossRefGoogle Scholar
  56. 56.
    Rufer, N., Dragowska, W., Thornbury, G., Roosnek, E., Lansdorp, P. M. (1998) Telomere length dynamics in a human lymphocytes subpopulations measured by flow cytometry. Nature Biotech. 16, 743–747.CrossRefGoogle Scholar
  57. 57.
    Hultdin, M., Gronlund, E., Norrback, K.-F., Ericsson-Lindstroem, E., Just, T. and Roos, G. (1998) telomere analysis by fluorescence in situ hybridization and flow cytometry. Nucleic Acids Res. 26, 3651–3656.PubMedCrossRefGoogle Scholar
  58. 58.
    Baerlocher, G. M., Mak, J., Tien, T., and Lansdorp, P. M. (2002) Telomere length measurements by fluorescence in situ hybridization and flow cytometry: Tips and pitfalls. Cytometry 47, 89–99.PubMedCrossRefGoogle Scholar
  59. 59.
    Szostak, J. W. and Blackburn, E. H. (1982) Cloning yeast telomeres on linear plasmid vectors. Cell 29, 245–255.PubMedCrossRefGoogle Scholar
  60. 60.
    Guerrini, A. M., Ascenzioni F., Tribioli C., and Donini P. (1985) Transformation of Saccharomyces cerevisiae and Schizosaccharomyces pombe with linear plasmids containing 2 micron sequences. EMBO J. 4, 1569–1573.PubMedGoogle Scholar
  61. 61.
    Ascenzioni, F. and Lipps, H. J. (1986) A linear shuttle vector for yeast and hypotrichous ciliate Stylonychia. Gene 46, 123–126.PubMedCrossRefGoogle Scholar
  62. 62.
    Brown, W. R. (1989) Molecular cloning of human telomeres in yeast. Nature 338, 774–776.PubMedCrossRefGoogle Scholar
  63. 63.
    Guerrini, A. M., Ascenzioni, F., Pisani, G., Rappazzo G., Della Valle, G., and Donini, P. (1990) Cloning a fragment from the telomere of the long arm of human chromosome 9 in a YAC vector. Chromosoma 99, 138–142.PubMedCrossRefGoogle Scholar
  64. 64.
    Fu, G. and Barker, D. C. (1998) Rapid cloning of telomere-associated sequence using primer-tagged amplification. Biotechniques 24, 386–389.PubMedGoogle Scholar
  65. 65.
    Tzfati, Y., Fulton, T. B., Roy, J. and Blackburn, E. H. (2000) Template boundary in a yeast telomerase specified by RNA structure. Science 288, 863–867.PubMedCrossRefGoogle Scholar
  66. 66.
    Wen, J. M., Sun, L. B., Zhang, M., and Zheng, M. H. (1998) A non-isotopic method for the detection of telomerase activity in tumor tissue: TRAP-silver staining assay. J. Clinic. Pathol. 51, 110–112.CrossRefGoogle Scholar
  67. 67.
    Dalla Torre, C. A., Maciel, R. M. B., Pinheiro, N. A., Andrade, J. A. D., de Toledo, S. R. C., et al.. (2002) TRAP-silver staining, a highly sensitive assay for measuring telomerase activity in tumor tissue and cell lines. Bras. J. Med. Biol. Res. 35, 65–68.Google Scholar
  68. 68.
    Falchetti, M. L., Levi, A., Molinari, P., Verna, R., and D’Ambrosio, E. (1998) Inceased sensitivity and reproducibility of TRAP assay by avoiding direct primers interaction. Nucleic Acids Res. 26, 862–863.PubMedCrossRefGoogle Scholar
  69. 69.
    Kim, N. W. and Wu, F. (1997) Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Res. 25, 2595–2597.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Fiorentina Ascenzioni
    • 1
  • Pier Assunta Fradiani
    • 1
  • Pierluigi Donini
    • 1
  1. 1.Dipartimento di Biologia Cellulare e dello SviluppoUniversitá “La Sapienza”RomeItaly

Personalised recommendations