Skip to main content

Detection of Mitochondrial Localization of p53

  • Protocol
p53 Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 234))

Abstract

p53 is a master regulator of cell death pathways and has transcription-dependent and transcription-independent modes of action. Mitochondria are major signal transducers in apoptosis and are critical for p53-dependent cell death. Recently, we discovered that a fraction of stress-induced wild-type p53 protein rapidly translocates to mitochondria during p53-dependent apoptosis. Suborganellar localization by various methods shows that p53 predominantly localizes to the surface of mitochondria. Moreover, bypassing the nucleus by targeting p53 to mitochondria is sufficient to induce apoptosis in p53-null cells, without requiring further DNA damage. Here, we describe subcellular fractionation as a classic technique for detecting mitochondrial p53 in cell extracts. It consists of cell homogenization by hypo-osmotic swelling, removal of nuclear components by low-speed centrifugation, and mitochondrial isolation by a discontinuous sucrose density gradient. p53 and other mitochondrial proteins can then be detected by standard immunoblotting procedures. The quality of mitochondrial isolates can be verified for purity and intactness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levine, A. J. (1997) p53, the cellular gatekeeper for growth and division. Cell 88, 323–331.

    Article  PubMed  CAS  Google Scholar 

  2. Harris, C. C. (1996) Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J. Natl. Cancer Inst. 88, 1442–1455.

    Article  PubMed  CAS  Google Scholar 

  3. Gottlieb, T. M. (1998) p53 and apoptosis. Semin. Cancer Biol. 8, 359–368.

    Article  PubMed  CAS  Google Scholar 

  4. Brenner, C. and Kroemer, G. (2000) Mitochondria—the death signal integrators. Science 289, 1150–1151.

    Article  PubMed  CAS  Google Scholar 

  5. Moll, U. M. and Zaika, A. (2001) Nuclear and mitochondrial apoptotic pathways of p53. FEBS Lett. 493, 65–69.

    Article  PubMed  CAS  Google Scholar 

  6. Marchenko, N. D., Zaika, A., and Moll, U. M. (2000) Death signal-induced localization of p53 protein to mitochondria. J. Biol. Chem. 275, 16,202–16,212.

    Article  PubMed  CAS  Google Scholar 

  7. Sansome, C., Zaika, A., Marchenko, N. D., and Moll, U. M. (2001) Hypoxia death stimulus induced translocation of p53 protein to mitochondria. FEBS Lett. 488, 110–115.

    Article  PubMed  CAS  Google Scholar 

  8. Mihara, M., Erster, S., Zaika, A., et al. (2003) p53 has a direct apoptogenic role at the mitochondria. Mol. Cell DOI 10.1016/S1097276503000509.

    Google Scholar 

  9. Vamecq, J. and Van Hoof, F. (1984) Implication of a peroxisomal enzyme in the catabolism of glutaryl-CoA. Biochem. J. 221, 203–211.

    PubMed  CAS  Google Scholar 

  10. Diczfalusy, U. and Alexson, S.E.H. (1998) Peroxisomal chain shortening of prostaglandin F2. J. Lipid Res. 29, 1629–1636.

    Google Scholar 

  11. Bhattacharya, S. K., Thakar, J. H., Johnson, P. L., and Shanklin, D. R. (1991) Isolation of skeletal muscle mitochondria from hamsters using an ionic medium containing EDTA and nagarse. Anal. Biochem. 192, 344–349.

    Article  PubMed  CAS  Google Scholar 

  12. Beauvoit, B., Rigoulet, M., Guerin, B., and Canioni, P. (1989) Polyphosphates, a source of high energy phosphate in yeast mitochondria: a31P NMR study. FEBS Lett. 252, 17–21.

    Article  CAS  Google Scholar 

  13. Bogenhagen, D. and Clayton, D. A. (1974) The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 249, 7991–7995.

    PubMed  CAS  Google Scholar 

  14. Smith, A. L. (1967) Preparation and conditions for assay of mitochondria: slaughterhouse material small scale. Methods Enzymol. 10, 81–86.

    Article  CAS  Google Scholar 

  15. Rice, J. E. and Lindsay, J. G. (1997) Subcellular fractionation of mitochondria, in Subcellular Fractionation: A Practical Approach (Graham J. M. and Rickwood, D., eds.), IRL Press, Oxford, pp. 107–142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Mihara, M., Moll, U.M. (2003). Detection of Mitochondrial Localization of p53. In: Deb, S., Deb, S.P. (eds) p53 Protocols. Methods in Molecular Biology, vol 234. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-408-5:203

Download citation

  • DOI: https://doi.org/10.1385/1-59259-408-5:203

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-1-58829-106-6

  • Online ISBN: 978-1-59259-408-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics