Skip to main content

Signaling to p53

The Use of Phospho-Specific Antibodies to Probe for In Vivo Kinase Activation

  • Protocol
p53 Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 234))

  • 792 Accesses

Abstract

Phospho-specific antibody technology has been recently adopted to study p53 phosphorylation both in vivo and in vitro. We have developed and carefully characterized p53 phospho-specific reagents directed to major amino- and carboxy-terminal regulatory sites. The specificities of both polyclonal and monoclonal reagents targeting the same phospho-epitope are discussed. We have defined the major chemical binding determinants for specific monoclonal reagents by determining the relative contribution of charge and sequence to epitope recognition. Remarkably, we have found that the utility of these reagents in different assay systems is not universal and depends both on epitope conformation and affinity. This is reflected in the striking differences in their ability to detect endogenous p53 and recombinant protein. Therefore, we conclude that this novel class of reagents is not generally applicable, but that the utility of each reagent must be determined empirically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogelstein, B., Lane, D. P., and Levine, A. J. (2000) Surfing the p53 network. Nature 408, 307–310.

    Article  PubMed  CAS  Google Scholar 

  2. Hupp, T. R., Lane, D. P., and Ball, K. L. (2000) Strategies for manipulating the p53 pathway in the treatment of human cancer. Biochem. J. 352, 1–17.

    Article  PubMed  CAS  Google Scholar 

  3. Hupp, T. R., Sparks, A., and Lane, D. P. (1995) Small peptides activate the latent sequence-specific DNA binding function of p53. Cell 83, 237–245.

    Article  PubMed  CAS  Google Scholar 

  4. Blaydes, J. P. and Hupp, T. R. (1998) DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene 17, 1045–1052.

    Article  PubMed  CAS  Google Scholar 

  5. Wang, Y. and Prives, C. (1995) Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 376, 88–91.

    Article  PubMed  CAS  Google Scholar 

  6. Blaydes, J. P., Luciani, M. G., Pospisilova, S., Ball, H. M., Vojtesek, B., and Hupp, T. R. (2001) Stoichiometric phosphorylation of human p53 at Ser315 stimulates p53-dependent transcription. J. Biol. Chem. 276, 4699–4708.

    Article  PubMed  CAS  Google Scholar 

  7. Gu, W. and Roeder, R. G. (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606.

    Article  PubMed  CAS  Google Scholar 

  8. Sakaguchi, K., Herrera, J. E., Saito, S., et al. (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12, 2831–2841.

    Article  PubMed  CAS  Google Scholar 

  9. Avantaggiati, M. L., Ogryzko, V., Gardner, K., Giordano, A., Levine, A. S., and Kelly, K. (1997) Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89, 1175–1184.

    Article  PubMed  CAS  Google Scholar 

  10. Momand, J., Zambetti, G. P., Olson, D. C., George, D., and Levine, A. J. (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237–1245.

    Article  PubMed  CAS  Google Scholar 

  11. Craig, A. L., Burch, L., Vojtesek, B., Mikutowska, J., Thompson, A., and Hupp, T. R. (1999) Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of mdm2 (mouse double minute 2) protein are modified in human cancers. Biochem. J. 342, 133–141.

    Article  PubMed  CAS  Google Scholar 

  12. Dornan, D., and Hupp, T. R. (2001) Inhibition of p53-dependent transcription by BOX-1 phospho-peptide mimetics that bind to p300. EMBO Rep. 2, 139–144.

    Article  PubMed  CAS  Google Scholar 

  13. Yeargin, J. and Haas, M. (1995) Elevated levels of wild-type p53 induced by radiolabeling of cells leads to apoptosis or sustained growth arrest. Curr. Biol. 5, 423–431.

    Article  PubMed  CAS  Google Scholar 

  14. Bond, J. A., Webley, K., Wyllie, F. S., Jones, C. J., Craig, A., Hupp, T., and Wynford-Thomas, D. (1999) p53-Dependent growth arrest and altered p53-immunoreactivity following metabolic labelling with 32P ortho-phosphate in human fibroblasts. Oncogene 18, 3788–3792.

    Article  PubMed  CAS  Google Scholar 

  15. Abraham, J., Spaner, D., and Benchimol, S. (1999) Phosphorylation of p53 protein in response to ionizing radiation occurs at multiple sites in both normal and DNA-PK deficient cells. Oncogene 18, 1521–1527.

    Article  PubMed  CAS  Google Scholar 

  16. Craig, A. L., Blaydes, J. P., Burch, L. R., Thompson, A. M., and Hupp, T. R. (1999) Dephosphorylation of p53 at Ser20 after cellular exposure to low levels of non-ionizing radiation. Oncogene 18, 6305–6312.

    Article  PubMed  CAS  Google Scholar 

  17. Blaydes, J. P., Craig, A. L., Wallace, M., et al. (2000) Synergistic activation of p53-dependent transcription by two cooperating damage recognition pathways. Oncogene 19, 3829–3839.

    Article  PubMed  CAS  Google Scholar 

  18. Webley, K., Bond, J. A., Jones, C. J., Blaydes, J. P., Craig, A., Hupp, T., and Wynford-Thomas, D. (2000) Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage. Mol. Cell. Biol. 20, 2803–2808.

    Article  PubMed  CAS  Google Scholar 

  19. Atherton, E., Bridgen, J., and Sheppard, R. C. (1976) A polyamide support for solid-phase protein sequencing. FEBS Lett. 64, 173–175.

    Article  PubMed  CAS  Google Scholar 

  20. Khalkhali-Ellis, Z. (1995) An improved SDS-polyacrylamide gel electrophoresis for resolution of peptides in the range of 3.5-200kDa. Prep. Biochem. 25, 1–9.

    Article  PubMed  CAS  Google Scholar 

  21. Harlow, E. and Lane, D. P. (1988) Antibodies: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  22. Kohler, G., Howe, S. C., and Milstein, C. (1976) Fusion between immunoglobulin-secreting and nonsecreting myeloma cell lines. Eur. J. Immunol. 6, 292–295.

    Article  PubMed  CAS  Google Scholar 

  23. Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y., and Prives, C. (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289–300.

    PubMed  CAS  Google Scholar 

  24. Luciani, M. G., Hutchins, J. R., Zheleva, D., and Hupp, T. R. (2000) The C-terminal regulatory domain of p53 contains a functional docking site for cyclin A. J. Mol. Biol. 300, 503–518.

    Article  PubMed  CAS  Google Scholar 

  25. Hupp, T. R. and Lane, D. P. (1994) Allosteric activation of latent p53 tetramers. Curr. Biol. 4, 865–875.

    Article  PubMed  CAS  Google Scholar 

  26. Shieh, S. Y., Taya, Y., and Prives, C. (1999) DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J. 18, 1815–1823.

    Article  PubMed  CAS  Google Scholar 

  27. Wallace, M., Coates, P. J., Wright, E. G., and Ball, K. L. (2001) Differential posttranslational modification of the tumour suppressor proteins Rb and p53 modulate the rates of radiation-induced apoptosis in vivo. Oncogene 20, 3597–3608.

    Article  PubMed  CAS  Google Scholar 

  28. Kapoor, M., and Lozano, G. (1998) Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proc. Natl. Acad. Sci. USA 95, 2834–2837.

    Article  PubMed  CAS  Google Scholar 

  29. Lu, H., Taya, Y., Ikeda, M., and Levine, A. J. (1998) Ultraviolet radiation, but not gamma radiation or etoposide-induced DNA damage, results in the phosphorylation of the murine p53 protein at serine-389. Proc. Natl. Acad. Sci. USA 95, 6399–6402.

    Article  PubMed  CAS  Google Scholar 

  30. Achari, Y. and Lees-Miller, S. P. (2000) Detection of DNA-dependent protein kinase in extracts from human and rodent cells. Methods Mol. Biol. 99, 85–97.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Craig, A.L., Bray, S.E., Finlan, L.E., Kernohan, N.M., Hupp, T.R. (2003). Signaling to p53. In: Deb, S., Deb, S.P. (eds) p53 Protocols. Methods in Molecular Biology, vol 234. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-408-5:171

Download citation

  • DOI: https://doi.org/10.1385/1-59259-408-5:171

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-1-58829-106-6

  • Online ISBN: 978-1-59259-408-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics