Skip to main content

Purification, Reconstitution, and Functional Characterization of Zinc Transporter from Rat Renal Brush Border Membranes

  • Protocol
Membrane Protein Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 228))

Abstract

Zinc is an integral component of a wide variety of functional proteins, enzymes, and transcription factors where it exerts specific actions over a wide range of physiological processes such as growth, development, and functioning of the endocrine, immune, and nervous systems (14). Zinc is also involved in stabilizing membrane structure, and in protection at the cellular level by preventing lipid peroxidation and reducing free radical formation (5). The primary site of zinc regulation in mammals is intestinal absorption. After being absorbed, zinc is bound to albumin in the circulation, where it is maintained within a narrow range (1 μg/mL) in mammals. Most of the zinc is taken up by the liver before being redistributed to other organs. The primary routes of zinc excretion are via pancreatic, biliary, and intestinal secretions. A very small amount of zinc is excreted by the kidney, as most of the zinc from the glomerular filtrate gets reabsorbed in the renal tubular system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prasad, A.S. (1983) Clinical, biochemical and nutritional spectrum of zinc deficiency in human subjects. An update. Nutr. Rev. 41, 197–208.

    Article  PubMed  CAS  Google Scholar 

  2. Vallee, B.L. and Auld, D.S. (1990) Zinc coordination function and structural of zinc enzymes and other proteins. Biochemistry 29, 5648–5659.

    Article  Google Scholar 

  3. Vallee, B.L. and Falchuk, K.H. (1993) The biochemical bases of zinc physiology. Physiol. Rev. 73, 79–105.

    PubMed  CAS  Google Scholar 

  4. Wallwork, J.C. and Sandstead, H.H. (1993) Zinc and brain function, in Essential and Toxic Trace Elements in Human Health and Disease: An Update (Prasad, A.S., ed.)., Progress in Clinical and Biological Research. vol. 380, pp. 65–80.

    Google Scholar 

  5. Nath, R., Gupta, A., Prasad, R., Pandav, S.S., and Thakur, R. (1999) Reactive oxygen species and age related macular degeneration, in Anti-oxidant in Human Health and Disease (Temple, N. J. and Basu, T., eds.), CAB Int., Oxford, England, pp. 285–292.

    Google Scholar 

  6. Reimold, E.V (1980) Changes in zinc metabolism during the course of nephrotic syndrome. Am. J. Dis. Child. 134, 46–50.

    PubMed  CAS  Google Scholar 

  7. Stec, J., Podracka, L., Parkovcekova, D., and Koller, I. (1990) Zinc and copper in nephrotic syndrome. Nephron. 56, 186–187.

    Article  PubMed  CAS  Google Scholar 

  8. Van Wouse, J.P. (1995) Clinical and laboratory assessment of zinc deficiency in Dutch children: A review. Biol. Trace. Elem. Res. 49, 211–225.

    Article  Google Scholar 

  9. Machen, M., Montgomery, T., Holland, R., Braselton, E., Dunslan, R., Brewere, G. et al. (1996) Bovine hereditary zinc deficiency lethal trait A 46. J. Vet. Daign Invest. 8, 219–227.

    CAS  Google Scholar 

  10. Berger, S. J. and Sacktor, B. (1970) Isolation and biochemical characterization of brush border from rabbit kidney. J. Cell. Biol. 47, 637–645.

    Article  PubMed  CAS  Google Scholar 

  11. Sacktor, B. (1977) Transport in mammalian vesicles isolated from the mammalian kidney and intestine, in Current Topics in Bioenergetics (Saudi, R., ed.), Academic, New York, pp. 39–81.

    Google Scholar 

  12. Weiser, M.M., Walters, J.R.F., and Wilson, J.R. (1986) Intestinal cell membrane. Int. Rev. Cytol. 101, 1–57.

    Article  PubMed  CAS  Google Scholar 

  13. Berteloot, A. and Semenza, G. (1990) Advantage and limitations of vesicles for the characterization and the kinetic analysis of transport system. Meth. Enzymol. 192, 409–437.

    Article  PubMed  CAS  Google Scholar 

  14. Lichtenberg, D., Robson, R. J., and Dennis, E.A. (1983) Solubilization by detergents. Biochem. Biophys. Acta. 737, 285–304.

    PubMed  CAS  Google Scholar 

  15. Rivnay, B. and Metzger, H. (1982) Reconstitution of the receptor for immunoglobulin E into liposome. Condition for incorporation of the receptor into vesicles. J. Biol. Chem. 257, 12,800–12,808.

    PubMed  CAS  Google Scholar 

  16. Tanford, C. (1980) The hydrophobic effect, 2nd ed., Wiley, New York.

    Google Scholar 

  17. Prasad, R., Kinsella, J., and Sactor, B. (1988) Renal adaptation to metabolic acidosis in senescent rats. Am. J. Physiol. 255, F1183–F1190.

    PubMed  CAS  Google Scholar 

  18. Prasad, R. and Nath, R. (1993) Zinc transport in monkey renal brush border membrane vesicles and its interaction with cadmium: A kinetic study. J. Trace. Elem. Exptl. Med. 6, 95–107.

    CAS  Google Scholar 

  19. Prasad, R., Kaur, D., and Kumar, V. (1996) Kinetic characterization of zinc binding to brush border membranes from rat kidney cortex. Interaction with cadmium. Biochem. Biophys. Acta 1284, 69–78.

    Article  PubMed  Google Scholar 

  20. Bergmeyer, M.V.C. (1963) In Methods of Enzymatic Analysis, Academic, New York, p. 783.

    Google Scholar 

  21. Dahlqvist, A. (1964) Method for the assay of intestinal disaccharidase. Anal. Biochem. 7, 18–25.

    Article  PubMed  CAS  Google Scholar 

  22. Quigley, J.P and Gotterer, G.S. (1969) Distribution of (Na+−K+)-stimulated ATPase activity in rat intestinal mucosa. Biochem. Biophys. Acta 173, 456–458.

    Article  PubMed  CAS  Google Scholar 

  23. Fiske, C.H. and Subbarow, G. (1925) The calorimetric determination of phosphorous. J. Biol. Chem. 66, 375–400.

    CAS  Google Scholar 

  24. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing, the principle of protein dye binding. Analyt. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  25. Reynols, E.S. (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell. Biol. 17, 208–213.

    Article  Google Scholar 

  26. Kumar, R and Prasad, R. (1999) Purification and characterization of major zinc binding protein from renal brush border membrane of rat. Biochim. Biophys. Acta 1419, 23–32.

    Article  PubMed  CAS  Google Scholar 

  27. Laemmli, U.K. (1970) Cleavage of structural protein during the assembly of the head of bacteriophage. 14. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  28. Nielson, K.B., Atkin, C.L., and Winge, D.R. (1985) Distinct metal binding configuration in metallothionein. J. Biol. Chem. 260, 5342–5350.

    PubMed  CAS  Google Scholar 

  29. Chaplin, F.F. (1986) A phenol sulphuric acid assay for the carbohydrate analysis: A practical approach (Chaplin, M.F. and Kennedy, I.F., eds.), FRL. pp. 2, 3.

    Google Scholar 

  30. Richard, D., Klausner, L., and Renswouds, JV (1984) Reconstitution of membrane protein. Meth. Enzymol. 104, 340–347.

    Article  Google Scholar 

  31. Kumar, R. and Prasad, R. (1999) Functional reconstitution of zinc transporter from brush border membrane of rat renal cortex. J. Biochem. Mol. Biol. Biophys. 3, 27–36.

    CAS  Google Scholar 

  32. Kumar, R. and Prasad, R. (2001) Functional characterization of purified Zinc transporter from renal brush border membrane of rat. Biochim. Biophys. Acta. 1509, 429–439.

    Google Scholar 

  33. Piscator, M. (1974) Recent advances in the assessment of health effects of environmental pollution C.E.C.E.P.A. WHO Symp., Paris. p. 951.

    Google Scholar 

  34. Schali, C., Vaughen, D.A. and Fanestil, D.D. (1986) Reconstitution of the partially purified renal phosphate (P.) transporter. Biochem. J. 235, 189–197.

    PubMed  CAS  Google Scholar 

  35. Malathi, P. and Preiser, H. (1983) Isolation of the sodium dependent D-glucose transport protein from brush border membrane. Biochim. Biophys. Acta. 735, 314–324.

    Article  PubMed  CAS  Google Scholar 

  36. Helenius, A. and Simons, K. (1975) Solubilization of membrane by detergents. Biochim. Biophys. Acta 415, 29–79.

    PubMed  CAS  Google Scholar 

  37. Hjelmeland, I.M. and Chrambac, A. (1984) Solubilization of membrane by detergents. Meth. Enzymol. 104, 305.

    Article  PubMed  CAS  Google Scholar 

  38. Klausener, R.D., Van Renswoude, J., Blumanthal, R. and Rivnay, B. (1984) in Receptor Biochemistry and Methodology, Volume 3 (Venter, J.C. and Hurrison, L.C., eds.), Liss, New York, p. 209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Prasad, R. (2003). Purification, Reconstitution, and Functional Characterization of Zinc Transporter from Rat Renal Brush Border Membranes. In: Selinsky, B.S. (eds) Membrane Protein Protocols. Methods in Molecular Biology, vol 228. Humana Press. https://doi.org/10.1385/1-59259-400-X:195

Download citation

  • DOI: https://doi.org/10.1385/1-59259-400-X:195

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-124-0

  • Online ISBN: 978-1-59259-400-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics