Skip to main content

Generating Gene Knockout Mice for Studying Mechanisms Underlying Drug Addiction

  • Protocol
Drugs of Abuse

Part of the book series: Methods In Molecular Medicine™ ((MIMM,volume 79))

  • 1389 Accesses

Abstract

Drug addiction is a chronic relapsing disease with psychological and social factors (1). Compulsive drug-taking is a central feature of drug addiction (24). A major goal of drug abuse research is to understand the cellular and molecular mechanisms underlying the development of the loss of control over drug-taking (24). Because the neurobiological mechanisms underlying the development of uncontrolled drug-taking behaviors are associated with the brain dopaminergic and glutamatergic systems (58), animal models are obviously needed for the various investigations. With the development of the gene targeting approach (913), genetically engineered mouse models have become increasingly useful for studying molecular mechanisms underlying drug addiction. Gene targeting allows a direct assessment of the contribution of individual genes to specific behaviors in mice. This technology provides a very useful alternative as opposed to pharmacological approach to dissect complex biological mechanisms, including how the dopamine (DA) receptors and the DA transporter function in vivo (1421).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leshner, A. I. (1997) Adiction is a brain disease, and it matters. Science 278, 45–47.

    Article  PubMed  CAS  Google Scholar 

  2. Koob, G. F., Sanna, P. P., and Bloom, F. E. (1998) Neuroscience of addiction. Neuron 21, 467–476.

    Article  PubMed  CAS  Google Scholar 

  3. Berke, J. D. and Hyman, S. E. (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25, 515–532.

    Article  PubMed  CAS  Google Scholar 

  4. Nestler, E. J. and Aghajanian, G. K. (1997) Molecular and cellular basis of addiction. Science 278, 58–63.

    Article  PubMed  CAS  Google Scholar 

  5. Le Moal, M. and Simon, H. (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol. Rev. 71, 155–234.

    PubMed  Google Scholar 

  6. Koob, G. F. (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol. Sci. 13, 177–184.

    Article  PubMed  CAS  Google Scholar 

  7. Wolf, M. E. (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol. 54, 679–720.

    Article  PubMed  CAS  Google Scholar 

  8. Vanderschuren, L. J. and Kalivas, P. W. (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151, 99–120.

    Article  PubMed  CAS  Google Scholar 

  9. Doetschman, T., Gregg, R. G., Maeda, N., Hooper, M. L., Melton, D. W., Thompson, S., and Smithies, O. (1987) Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330, 576–578.

    Article  PubMed  CAS  Google Scholar 

  10. Thomas, K. R. and Capecchi, M. R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512.

    Article  PubMed  CAS  Google Scholar 

  11. Evans, M. J. (2001) The cultural mouse. Nat. Med. 7, 1081–1083.

    Article  PubMed  CAS  Google Scholar 

  12. Smithies, O. (2001) Forty years with homologous recombination. Nat. Med. 7, 1083–1086.

    Article  PubMed  CAS  Google Scholar 

  13. Capecchi, M. R. (2001) Generating mice with targeted mutations. Nat. Med. 7, 1086–1090.

    Article  PubMed  CAS  Google Scholar 

  14. Xu, M., Moratalla, R., Gold, L. H., et al. (1994) Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 79, 729–742.

    Article  PubMed  CAS  Google Scholar 

  15. Drago, J., Gerfen, C. R., Lachowicz, J. E., et al. (1994) Altered striatal function in a mutant mouse lacking D1A dopamine receptors. Proc. Natl. Acad. Sci. USA 91, 12,564–12,568.

    Article  PubMed  CAS  Google Scholar 

  16. Baik, J., Picetti, R., Saiardi, A., et al. (1995) Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377, 424–428.

    Article  PubMed  CAS  Google Scholar 

  17. Giros, B., Jaber, M., Jones, S. R., Wrightman, R. M., and Caron, M. G. (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379, 606–612.

    Article  PubMed  CAS  Google Scholar 

  18. Accili, D., Fishburn, C. S., Drago, J., et al. (1996) A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc. Natl. Acad. Sci. USA 93, 1945–1949.

    Article  PubMed  CAS  Google Scholar 

  19. Xu, M., Tirado, G., Moratalla, R., White, N. M., Graybiel, A. M., and Tonegawa, S. (1997) Dopamine D3 receptor mutant mice exhibit increased behavioral sensitivity to concurrent stimulation of D1 and D2 receptors. Neuron 19, 837–848.

    Article  PubMed  CAS  Google Scholar 

  20. Rubinstein, M., Phillips, T. J., Bunzow, J. R., et al. (1997) Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 90, 991–1001.

    Article  PubMed  CAS  Google Scholar 

  21. Kelly, M. A., Rubinstein, M., Phillips, T. J., et al. (1998) Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J. Neurosci. 18, 3470–3479.

    PubMed  CAS  Google Scholar 

  22. Sambrook, J., Fritsch, E. F., and Maniatis, T., eds. (1989) Molecular Cloning, A Laboratory Manual, 2nd edit. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  23. Hogan, B., Costantini, F., and Lacy, E., eds. (1986) Manipulating the Mouse Embryo: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  24. Wassarman, P. M. and DePamphilis, M. L., eds. (1993) Methods in Enzymology: Guide to Techniques in Mouse Development, Vol. 225. Academic Press, San Diego.

    Google Scholar 

  25. Doetschman, T. (1994) Gene transfer in embryonic stem cells, in Transgenic Animal Technology: A Laboratory Handbook (Pinkert, C. A., ed.), Academic Press, San Diego, pp. 115–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Zhang, J., Xu, M. (2003). Generating Gene Knockout Mice for Studying Mechanisms Underlying Drug Addiction. In: Wang, J.Q. (eds) Drugs of Abuse. Methods In Molecular Medicine™, vol 79. Humana Press. https://doi.org/10.1385/1-59259-358-5:351

Download citation

  • DOI: https://doi.org/10.1385/1-59259-358-5:351

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-057-1

  • Online ISBN: 978-1-59259-358-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics