Skip to main content

Structural and Functional Diversity of Glycoconjugates

A Formidable Challenge to the Glycoanalyst

  • Protocol
Capillary Electrophoresis of Carbohydrates

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 213))

Abstract

Glycoconjugates represent the most structurally and functionally diverse molecules in nature. They range in complexity from relatively simple glycosphingolipids and nuclear or cytosolic glycoproteins with dynamic monosaccharide modifications to extraordinarily complex mucins and proteoglycans (for review, see refs. 1,2). Some of the proteoglycans are perhaps the most complex molecules in biology, with more than 100 different saccharide side chains on a single polypeptide. We now realize that most proteins, even those within intracellular compartments, are co- and/or post-translationally modified by covalent attachment of saccharides (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G., and Marth, J. (1999) Essentials of Glycobiology, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  2. Hart, G. W. (1992) Glycosylation. Curr. Opin. Cell Biol. 4, 1017–1023.

    PubMed  CAS  Google Scholar 

  3. Hart, G. W., Haltiwanger, R. S., Holt, G. D., and Kelly, W. G. (1989) Glycosylation in the nucleus and cytoplasm, Annu. Rev. Biochem. 58, 841–874.

    PubMed  CAS  Google Scholar 

  4. Frey, A., Giannasca, K. T., Weltzin, R., Giannasca, P. J., Reggio, H., Lencer, W. I., and Neutra, M. R. (1996) Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J. Exp. Med. 184, 1045–1059.

    PubMed  CAS  Google Scholar 

  5. Debbage, P. L. (1996) A systematic histochemical investigation in mammals of the dense glycocalyx glycosylations common to all cells bordering the interstitial fluid compartment of the brain. Acta. Histochem. 98, 9–28.

    PubMed  CAS  Google Scholar 

  6. Viitala, J. and Jarnefelt, J. (1985) The red cell surface revisited. TIBS 14, 392–395.

    Google Scholar 

  7. Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130.

    PubMed  CAS  Google Scholar 

  8. Scott, J. E. (1991) Proteoglycan: collagen interactions and corneal ultrastructure. Biochem. Soc. Trans. 19, 877–881.

    PubMed  CAS  Google Scholar 

  9. Jester, J. V., Moller-Pedersen, T., Huang, J. Y., Sax, C. M., Kays, W. T., Cavangh, H. D., et al. (1999) The cellular basis of corneal transparency: evidence for ‘corneal crystallins’. J. Cell Sci. 112, 613–622.

    PubMed  CAS  Google Scholar 

  10. Nakazawa, K., Suzuki, S., and Wada, K. (1995) Proteoglycan synthesis by corneal explants from developing embryonic chicken. J. Biochem. (Tokyo) 117, 707–718.

    CAS  Google Scholar 

  11. Kim, Y. J., Grodzinsky, A. J., and Plaas, A. H. K. (1996) Compression of cartilage results in differential effects on biosynthetic pathways for aggrecan, link protein, and hyaluronan. Arch. Biochem. Biophys. 328, 331–340.

    PubMed  CAS  Google Scholar 

  12. Wallis, G. A. (1995) Cartilage disorders: the importance of being sulphated. Curr. Biol. 5, 225–227.

    PubMed  CAS  Google Scholar 

  13. Caplan, A. I., Fiszman, M. Y., and Eppenberger, H. M. (1983) Molecular and cell isoforms during development. Science 221, 921–927.

    PubMed  CAS  Google Scholar 

  14. Dietrich, C. P., Tersariol, I. L. S., Toma, L., Moraes, C. T., Porcionatto, M. A., Oliveira, F. W., and Nader, H. B. (1998) Structure of heparan sulfate: identification of variable and constant oligosaccharide domains in eight heparan sulfates of different origins. Cell Mol. Biol. 44, 417–429.

    PubMed  CAS  Google Scholar 

  15. Salmivirta, M., Lidholt, K., and Lindahl, U. (1996) Heparan sulfate: a piece of information. FASEB J. 10, 1270–1279.

    PubMed  CAS  Google Scholar 

  16. Faham, S., Hileman, R. E., Fromm, J. R., Linhardt, R. J., and Rees, D. C. (1996) Heparin structure and interactions with basic fibroblast growth factor. Science 271, 1116–1120.

    PubMed  CAS  Google Scholar 

  17. Keller, J. M. (1994) Specificity in heparin/heparan sulphate-protein interactions. Glycobiology 4, 1–2.

    PubMed  CAS  Google Scholar 

  18. Devine, P. L. and McKenzie, I. F. C. (1992) Mucins: structure, function, and associations with malignancy. BioEssays 14, 619–625.

    PubMed  CAS  Google Scholar 

  19. Strous, G. J. and Dekker, J. (1992) Mucin-type glycoproteins. CRC Crit. Rev. Biochem. Mol. Biol. 27, 57–92.

    CAS  Google Scholar 

  20. Kornfeld, R. and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664.

    PubMed  CAS  Google Scholar 

  21. Muir, H. (1990) Structure, biology and pathology of proteoglycans. The coming of age of proteoglycans. Biochem. Soc. Trans. 18, 787–789.

    PubMed  CAS  Google Scholar 

  22. Oldberg, A., Antonsson, P., Hedbom, E., and Heinegård, D. (1990) Structure and function of extracellular matrix proteoglycans. Biochem. Soc. Trans. 18, 789–792.

    PubMed  CAS  Google Scholar 

  23. Swiedler, S. J., Freed, J. H., Tarentino, A. L., Plummer, T. H., Jr., and Hart, G. W. (1985) Oligosaccharide microheterogeneity of the murine major histocompatibility antigens. Reproducible site-specific patterns of sialylation and branching in asparagine-linked oligosaccharides. J. Biol. Chem. 260, 4046–4054.

    PubMed  CAS  Google Scholar 

  24. Rademacher, T. W., Parekh, R. B., and Dwek, R. A. (1988) Glycobiology. Annu. Rev. Biochem. 57, 785–838.

    PubMed  CAS  Google Scholar 

  25. Parekh, R. B., Dwek, R. A., Thomas, J. R., Opdenakker, G., and Rademacher, T. W. (1989) Cell-type-specific and site-specific N-glycosylation of type I and type II human tissue plasminogen activator. Biochemistry 28, 7644–7662.

    PubMed  CAS  Google Scholar 

  26. Rudd, P. M., Joao, H. C., Coghill, E., Fiten, P., Saunders, M. R., Opdenakker, G., and Dwek, R. A. (1994) Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry 33, 17–22.

    PubMed  CAS  Google Scholar 

  27. Rauvala, H. and Finne, J. (1979) Structural similarity of the terminal carbohydrate sequences of glycoproteins and glycolipids. FEBS Lett. 97, 1–8.

    PubMed  CAS  Google Scholar 

  28. Hakomori, S. and Igarashi, Y. (1995) Functional role of glycosphingolipids in cell recognition and signaling. J. Biochem. (Tokyo) 118, 1091–1103.

    CAS  Google Scholar 

  29. Hakomori, S. and Igarashi, Y. (1993) Gangliosides and glycosphingolipids as modulators of cell growth, adhesion, and transmembrane signaling. Adv. Lipid Res. 25, 147–162.

    PubMed  CAS  Google Scholar 

  30. Hart, G. W. (1997) Dynamic O-Linked glycosylation of nuclear and cytoskeletal proteins. Ann. Rev. Biochem. 66, 315–335.

    PubMed  CAS  Google Scholar 

  31. Roquemore, E. P., Chou, T.-Y., and Hart, G. W. (1994) Detection of O-linked N-acetylglucosamine (O-GlcNAc) on cytoplasmic and nuclear proteins. Methods Enzymol. 230, 443–460.

    PubMed  CAS  Google Scholar 

  32. Snow, D. M., Shaper, J. H., Shaper, N. L., and Hart, G. W. (1999) Determination of β1,4-galactosyltransferase enzymatic activity by capillary electrophoresis and laser-induced fluorescence detection. Analyt. Biochem. 271, 36–42.

    PubMed  CAS  Google Scholar 

  33. Alonso, M. D., Lomako, J., Lomako, W. M., and Whelan, W. J. (1995) A new look at the biogenesis of glycogen. FASEB J. 9, 1126–1137.

    PubMed  CAS  Google Scholar 

  34. Lomako, J., Lomako, W. M., and Whelan, W. J. (1990) The nature of the primer for glycogen synthesis in muscle. FEBS Lett. 268, 8–12.

    PubMed  CAS  Google Scholar 

  35. Marchase, R. B., Bounelis, P., Brumley, L. M., Dey, N., Browne, B., Auger, D., et al. (1993) Phosphoglucomutase in Saccharomyces cerevisiae is a cytoplasmic glycoprotein and the acceptor for a Glc-phosphotransferase. J. Biol. Chem. 268, 8341–8349.

    PubMed  CAS  Google Scholar 

  36. Veyna, N. A., Jay, J. C., Srisomsap, C., Bounelis, P., and Marchase, R. B. (1994) The addition of glucose-1-phosphate to the cytoplasmic glycoprotein phosphoglucomutase is modulated by intracellular calcium in PC12 cells and rat cortical synaptosomes. J. Neurochem. 62, 456–64.

    PubMed  CAS  Google Scholar 

  37. Fu, L., Bounelis, P., Dey, N., Browne, B. L., Marchase, R. B., and Bedwell, D. M. (1995) The posttranslational modification of phosphoglucomutase is regulated by galactose induction and glucose repression in Saccharomyces cerevisiae. J. Bacteriol. 177, 3087–94.

    PubMed  CAS  Google Scholar 

  38. Teng-umnua, P., Morris, H. R., Dell, A., Panico, M., Paxton, T., West, C. M. (1998) The cytoplasmic F-box binding protein SKP1 contains a novel pentasaccharide linked to hydroxyproline in dictyostelium. J. Biol. Chem. 273, 18,242–18,249.

    Google Scholar 

  39. Heese-Peck, A., Cole, R. N., Borkhsenious, O. N., Hart, G. W., and Raikhel, N. V. (1995) Plant nuclear pore complex proteins are modified by novel oligosaccharides with terminal N-acetylglucosamine. Plant Cell 7, 1459–1471.

    PubMed  CAS  Google Scholar 

  40. Heese-Peck, A. and Raikhel, N. V. (1998) A glycoprotein modified with terminal N-acetylglucosamine and localized at the nuclear rim shows sequence similarity to aldose-1-epimerases. Plant Cell 10, 599–612.

    PubMed  CAS  Google Scholar 

  41. Kinoshita, S. and Saiga, H. (1979) The role of proteoglycan in the development of sea urchins. I Abnormal development of sea urchin embryos caused by the disturbance of proteoglycan synthesis. Exp.Cell Res. 123, 229–236.

    PubMed  CAS  Google Scholar 

  42. Kinoshita, S. (1974) Some observations on a protein-mucopolysaccharide complex found in sea urchin embryos. Exp. Cell Res. 85, 31–40.

    PubMed  CAS  Google Scholar 

  43. Hiscock, D. R. R., Yanagishita, M., and Hascall, V. C. (1994) Nuclear localization of glycosaminoglycans in rat ovarian granulosa cells. J. Biol. Chem. 269, 4539–4546.

    PubMed  CAS  Google Scholar 

  44. Fukuda, M., Bierhuizen, M. F. A., and Nakayama, J. (1996) Expression cloning of glycosyltransferases. Glycobiology 6, 683–689.

    PubMed  CAS  Google Scholar 

  45. Baenziger, J. U. (1994) Protein-specific glycosyltransferases: how and why they do it! FASEB J. 8, 1019–1025.

    PubMed  CAS  Google Scholar 

  46. Joziasse, D. H. (1992) Mammalian glycosyltransferases: genomic organization and protein structure. Glycobiology 2, 271–277.

    PubMed  CAS  Google Scholar 

  47. Hirschberg, C. B., Robbins, P. W., and Abeijon, C. (1998) Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu. Rev. Biochem. 67, 49–69.

    PubMed  CAS  Google Scholar 

  48. Abeijon, C., Mandon, E. C., and Hirschberg, C. B. (1997) Transporters of nucleotide sugars, nucleotide sulfate and ATP in the Golgi apparagus. TIBS 22, 203–207.

    PubMed  CAS  Google Scholar 

  49. Hennebicq, S., Tetaert, D., Soudan, B., Briand, G., Richet, C., Demeyer, D., et al. (1998) Polypeptide:N-acetylgalactosaminyltransferase activities towards the mucin MUC5AC peptide motif using microsomal preparations of normal and tumoral digestive mucosa. Biochimie 80, 69–73.

    PubMed  CAS  Google Scholar 

  50. Suzuki, S. and Honda, S. (1998) A tabulated review of capillary electrophoresis of carbohydrates. Electrophoresis 19, 2539–2560.

    PubMed  CAS  Google Scholar 

  51. Soga, T. and Heiger, D. N. (1998) Simultaneous determination of monosaccharides in glycoproteins by capillary electrophoresis. Analyt. Biochem. 261, 73–78.

    PubMed  CAS  Google Scholar 

  52. Chen, F. T. A. and Evangelista, R. A. (1998) Profiling glycoprotein N-linked oligosaccharide by capillary electrophoresis. Electrophoresis 19, 2639–2644.

    PubMed  CAS  Google Scholar 

  53. Denuzière, A., Taverna, M., Ferrier, D., and Domard, A. (1997) Capillary electrophoresis of glycosaminoglycan-derived disaccharides: application to stability studies of glycosaminoglycan chitosan complexes. Electrophoresis 18, 745–750.

    PubMed  Google Scholar 

  54. Sato, K., Okubo, A., and Yamazaki, S. (1997) Determination of monosaccharides derivatized with 2-aminobenzoic acid by capillary electrophoresis. Analyt.Biochem. 251, 119–121.

    PubMed  CAS  Google Scholar 

  55. El Rassi, Z. (1997) Recent developments in capillary electrophoresis of carbohydrate species. Electrophoresis 18, 2400–2407.

    PubMed  Google Scholar 

  56. Scapol, L., Marchi, E., and Viscomi, G. C. (1996) Capillary electrophoresis of heparin and dermatan sulfate unsaturated disaccharides with triethylamine and acetonitrile as electrolyte additives. J. Chromatogr. A. 735, 367–74.

    PubMed  CAS  Google Scholar 

  57. Hoffstetter-Kuhn, S., Alt, G., and Kuhn, R. (1996) Profiling of oligosaccharide-mediated microheterogeneity of a monoclonal antibody by capillary electrophoresis. Electrophoresis 17, 418–422.

    PubMed  CAS  Google Scholar 

  58. Kakehi, K. and Honda, S. (1996) Analysis of glycoproteins, glycopeptides and glycoprotein-derived oligosaccharides by high-performance capillary electrophoresis. [Review] [48 refs]. J. Chromatogr. A. 720, 377–393.

    PubMed  CAS  Google Scholar 

  59. Zhou, W. and Baldwin, R. P. (1996) Capillary electrophoresis and electrochemical detection of underivatized oligo-and polysaccharides with surfactant-controlled electroosmotic flow. Electrophoresis 17, 319–324.

    PubMed  CAS  Google Scholar 

  60. Hakomori, S. I., Yamamura, S., and Handa, K. (1998) Signal transduction through glyco(sphingo)lipids-Introduction and recent studies on glyco(sphingo)lipid-enriched microdomains. Ann. NY Acad. Sci. 845, 1–10.

    PubMed  CAS  Google Scholar 

  61. McConville, M. J. and Blackwell, J. M. (1991) Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani. Characterization of the promastigote and amastigote glycolipids. J. Biol. Chem. 266, 15,170–15,179.

    PubMed  CAS  Google Scholar 

  62. McConville, M. J., Homans, S. W., Thomas-Oates, J. E., Dell, A., and Bacic, A. (1990) Structures of the glycoinositolphospholipids from Leishmania major. A family of novel galactofuranose-containing glycolipids. J. Biol. Chem. 265, 7385–7394.

    PubMed  CAS  Google Scholar 

  63. Frick, W., Bauer, A., Bauer, J., Wied, S., and Müller, G. (1998) Structure-activity relationship of synthetic phosphoinositolglycans mimicking metabolic insulin action. Biochemistry 37, 13,421–13,436.

    PubMed  CAS  Google Scholar 

  64. Gaulton, G., Kelly, K. L., Pawlowski, J., Mato, J. M., and Jarett, L. (1988) Regulation and function of an insulin-sensitive glycosyl-phosphatidylinositol during T lymphocyte activation. Cell 53, 963–970.

    PubMed  CAS  Google Scholar 

  65. Ashford, D. A., Alafi, C. D., Gamble, V. M., Mackay, D. J. G., Rademacher, T. W., Williams, P. J., et al. (1993) Site-specific glycosylation of recombinant rat and human soluble CD4 variants expressed in Chinese hamster ovary cells. J. Biol. Chem. 268, 3260–3267.

    PubMed  CAS  Google Scholar 

  66. Rudd, P. M., Leatherbarrow, R. J., Rademacher, T. W., and Dwek, R. A. (1991) Diversification of the IgG molecule by oligosaccharides. Mol. Immunol. 28, 1369–1378.

    PubMed  CAS  Google Scholar 

  67. Lennarz, W. J. (1980) The Biochemistry of Glycoproteins and Proteoglycans, 1st ed., Plenum Press, New York, NY.

    Google Scholar 

  68. Yurchenco, P. D. and Schittny, J. C. (1990) Molecular architecture of basement membranes. FASEB J. 4, 1578–1590.

    Google Scholar 

  69. Cancilla, M. T., Penn, S. G., and Lebrilla, C. B. (1998) Alkaline degradation of oligosaccharides coupled with matrix-assisted laser desorption/ionization Fourier transform mass spectrometry: a method for sequencing oligosaccharides. Analyt. Chem. 70, 663–672.

    CAS  Google Scholar 

  70. Duk, M., Ugorski, M., and Lisowska, E. (1997) Beta-elimination of O-glycans from glycoproteins transferred to Immobilon P membranes: method and some applications. Anal. Biochem. 253, 98–102.

    PubMed  CAS  Google Scholar 

  71. Greis, K. D., Hayes, B. K., Comer, F. I., Kirk, M., Barnes, S., Lowary, T. L., and Hart, G. W. (1996) Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by beta-elimination and tandem electrospray mass spectrometry. Analyt. Biochem. 234, 38–49.

    PubMed  CAS  Google Scholar 

  72. Vercellotti, J. R., Nienaber, N., and Chang, C. J. (1970) Monosaccharides as O-glycosyl leaving groups from 3-hydroxy amino acids during base-catalyzed elimination. Carbohydr. Res. 13, 63–74.

    CAS  Google Scholar 

  73. Mellors, A. and Sutherland, D. R. (1994) Tools to cleave glycoproteins. Trends Biotechnol. 12, 15–18.

    PubMed  CAS  Google Scholar 

  74. Patel, T., Bruce, J., Merry, A., Bigge, C., Wormald, M., Jaques, A., and Parekh, R. (1993) Use of hydrazine to release in intact and unreduced form both N-and O-linked oligosaccharides from glycoproteins. Biochemistry 32, 679–693.

    PubMed  CAS  Google Scholar 

  75. Patel, T. P. and Parekh, R. B. (1994) Release of oligosaccharides from glycoproteins by hydrazinolysis. Methods Enzymol. 230, 57–66.

    PubMed  CAS  Google Scholar 

  76. Nuck, R., Zimmermann, M., Sauvageot, D., Josic, D., and Reutter, W. (1990) Optimized deglycosylation of glycoproteins by peptide-N4-(N-acetyl-beta-glucosaminyl)-asparagine amidase from Flavobacterium meningosepticum. Glycoconjugate J. 7, 279–286.

    CAS  Google Scholar 

  77. Tarentino, A. L. and Plummer, T. H., Jr. (1994) Enzymatic deglycosylation of asparagine-linked glycans: purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol. 230, 44–57.

    PubMed  CAS  Google Scholar 

  78. Yamagata, T. and Ito, M. (1992) In CRC Handbook of Endoglycosidases and Glycoamidases (Takahashi, N. and Muramatsu, T., eds.), CRC Press, Boca Raton, FL, pp. 133–182.

    Google Scholar 

  79. Fan, J.-Q., Yamamoto, K., Matsumoto, Y., Hirabayashi, Y., Kumagai, H., and Tochikura, T. (1990) Action of endo-alpha-N-acetylgalactosaminidase from Alcaligenes sp. on amino acid-O-glycans: comparison with the enzyme from Diplococcus pneumoniae. Biochem. Biophys. Res. Commun. 169, 751–757.

    PubMed  CAS  Google Scholar 

  80. Wu, A. M., Csako, G., and Herp, A. (1994) Structure, biosynthesis, and function of salivary mucins. Mol. Cell. Biochem. 137, 39–55.

    PubMed  CAS  Google Scholar 

  81. Shimizu, Y. and Shaw, S. (1993) Cell adhesion: mucins in the mainstream. Nature 366, 630,631.

    PubMed  CAS  Google Scholar 

  82. Thornton, D. J., Carlstedt, I., Howard, M., Devine, P. L., Price, M. R., and Sheehan, J. K. (1996) Respiratory mucins: identification of core proteins and glycoforms. Biochem. J. 316, 967–975.

    PubMed  CAS  Google Scholar 

  83. Jentoft, N. (1990) Why are proteins O-glycosylated? TIBS 15, 291–294.

    PubMed  CAS  Google Scholar 

  84. Snow, D. M. and Hart, G. W. (1998) Nuclear and cytoplasmic glycosylation. Int. Rev. Cytol. 181, 43–74.

    PubMed  CAS  Google Scholar 

  85. Kreppel, L. K. and Hart, G. W. (1999) Regulation of a cytosolic and nuclear O-GlcNAc transferase: role of the tetratricopeptide repeats. J. Biol. Chem. 274, 32,015–32,022.

    PubMed  CAS  Google Scholar 

  86. Kreppel, L. K., Blomberg, M. A., and Hart, G. W. (1997) Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem. 272, 9308–9315.

    PubMed  CAS  Google Scholar 

  87. Dong, D. L.-Y. and Hart, G. W. (1994) Purification and characterization of an O-GlcNAc selective N-acetyl-beta-d-glucosaminidase from rat spleen cytosol. J. Biol. Chem. 269, 19,321–19,330.

    PubMed  CAS  Google Scholar 

  88. Hart, G. W., Greis, K. D., Dong, L. Y. D., Blomberg, M. A., Chou, T. Y., Jiang, M. S., et al. (1995) O-linked N-acetylglucosamine: the “yin-yang” of ser/thr phosphorylation? Nuclear and cytoplasmic glycosylation. Adv. Exp. Med. Biol. 376, 115–123.

    PubMed  CAS  Google Scholar 

  89. Greis, K. D. and Hart, G. W. (1997) In Methods in Molecular Biology, Vol. 76: Glycoanalysis Protocols (Hounsell, E. F., ed.), Humana Press, Totowa, NJ.

    Google Scholar 

  90. Greis, K. D., Hayes, B. K., Comer, F. I., Kirk, M., Barnes, S., Lowary, T. L., and Hart, G. W. (1996) Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by beta-elimination and tandem electrospray mass spectrometry. Anal. Biochem. 234, 38–49.

    PubMed  CAS  Google Scholar 

  91. Silberstein, S. and Gilmore, R. (1996) Biochemistry, molecular biology, and genetics of the oligosaccharyltransferase. FASEB J. 10, 849–858.

    PubMed  CAS  Google Scholar 

  92. Vassilakos, A., Michalak, M., Lehrman, M. A., and Williams, D. B. (1998) Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry 37, 3480–3490.

    PubMed  CAS  Google Scholar 

  93. Williams, D. B. (1995) Calnexin leads glycoproteins into the fold. Glycoconjugate J. 12, 3,4.

    Google Scholar 

  94. Fernández, F., D’Alessio, C., Fanchiotti, S., and Parodi, A. J. (1998) A misfolded protein conformation is not a sufficient condition for in vivo glucosylation by the UDP-Glc:glycoprotein glucosyltransferase. EMBO J. 17, 5877–5886.

    PubMed  Google Scholar 

  95. Ganan, S., Cazzulo, J. J., and Parodi, A. J. (1991) A major proportion of N-glycoptoteins are transiently glucosylated in the endoplasmic reticulum. Biochemistry 30, 3098–3104.

    PubMed  CAS  Google Scholar 

  96. Brockhausen, I., Möller, G., Yang, J.-M., Khan, S. H., Matta, K. L., Paulsen, H., et al. (1992) Control of glycoprotein synthesis. Characterization of (1→4)-N-acetyl-beta-D-glucosaminyltransferases acting on the alpha-D-(1→3)-and alpha-D-(1→6)-linked arms of N-linked oligosaccharides. Carbohydr. Res. 236, 281–299.

    PubMed  CAS  Google Scholar 

  97. Schachter, H. (1991) The ‘yellow brick road’ to branched complex N-glycans. Glycobiology 1, 453–461.

    PubMed  CAS  Google Scholar 

  98. Iozzo, R. V. and Murdoch, A. D. (1996) Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 10, 598–614.

    PubMed  CAS  Google Scholar 

  99. Salmivirta, M. and Jalkanen, M. (1995) Syndecan family of cell surface proteoglycans: developmentally regulated receptors for extracellular effector molecules. Experientia 51, 863–872.

    PubMed  CAS  Google Scholar 

  100. Hascall, V. C., Calabro, A., Midura, R. J., and Yanagishita, M. (1994) Isolation and characterization of proteoglycans. Methods Enzymol. 230, 390–417.

    PubMed  CAS  Google Scholar 

  101. Grimshaw, J. (1997) Analysis of glycosaminoglycans and their oligosaccharide fragments by capillary electrophoresis. Electrophoresis 18, 2408–2414.

    PubMed  CAS  Google Scholar 

  102. Al-Hakim, A. and Linhardt, R. J. (1991) Capillary electrophoresis for the analysis of chondroitin sulfate-and dermatan sulfate-derived disaccharides. Analyt. Biochem. 195, 68–73.

    PubMed  CAS  Google Scholar 

  103. Low, M. G. and Zilversmit, D. B. (1980) Role of phosphatidylinositol in attachment of alkaline phosphate to membranes. Biochemistry 19, 3913–3918.

    PubMed  CAS  Google Scholar 

  104. Ferguson, M. A., Homans, S. W., Dwek, R. A., and Rademacher, T. W. (1988) Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science 239, 753–759.

    PubMed  CAS  Google Scholar 

  105. Doering, T. L., Masterson, W. J., Englund, P. T., and Hart, G. W. (1989) Biosynthesis of the glycosyl phosphatidylinositol membrane anchor of the trypanosome variant surface glycoprotein. Origin of the non-acetylated glucosamine. J. Biol. Chem. 264, 11,168–11,173.

    PubMed  CAS  Google Scholar 

  106. Doering, T. L., Masterson, W. J., Hart, G. W., and Englund, P. T. (1990) Biosynthesis of glycosyl phosphatidylinositol membrane anchors. J. Biol. Chem. 265, 611–614.

    PubMed  CAS  Google Scholar 

  107. Ferguson, M. A. (1991) Evolutionary aspects of GPI metabolism in kinetoplastid parasites. Cell Biol. Int. Rep. 11, 991–1005.

    Google Scholar 

  108. Ferguson, M. A. J. (1994) What can GPI do for you? Parasitol. Today 10, 48–52.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Hart, G.W. (2003). Structural and Functional Diversity of Glycoconjugates. In: Thibault, P., Honda, S. (eds) Capillary Electrophoresis of Carbohydrates. Methods in Molecular Biology™, vol 213. Humana Press. https://doi.org/10.1385/1-59259-294-5:3

Download citation

  • DOI: https://doi.org/10.1385/1-59259-294-5:3

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-826-4

  • Online ISBN: 978-1-59259-294-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics