Skip to main content

Production of Rat Monoclonal Antibodies Specific for Mouse Integrins

  • Protocol
Integrin Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 129))

  • 657 Accesses

Abstract

Monoclonal antibodies (MAbs) have proved to be an important tool for identifying novel cell-adhesion molecules and for determining their ligand binding specificity, function, and structure. Consequently, they have been instrumental in defining three families of adhesion receptors: the cadherin, immunoglobulin, and integrin families. Integrins include over 20 adhesion receptors that react with the extracellular matrix or cell-surface molecules. Integrins are composed of two distinct transmembrane glycoprotein subunits, α and β, which are noncovalently linked to each other. At least 15 α chains and 8 β chains have been observed in several possible combinations that determine the ligand specificity and function of the complex (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hynes, R. O. (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25.

    Article  PubMed  CAS  Google Scholar 

  2. Landis, R. C, Bennett, R. I., and Hogg, N. (1993) A novel LFA-1 activation epitope maps to the I domain. J. Cell Biol. 120, 1519–1527.

    Article  PubMed  CAS  Google Scholar 

  3. Lenter, M., Uhlig, H., Hamann, A., Jeno, P., Imhof, B., and Vestweber, D. (1993) A monoclonal antibody against an activation epitope on mouse integrin chain β1 blocks adhesion of lymphocyes to the endothelial integrin α6β1. Proc. Natl. Acad. Sci. USA 90, 9051–9055.

    Article  PubMed  CAS  Google Scholar 

  4. Mould, A. P., Garratt, A. N., Askari, J. A., Akiyama, S. K., and Humphries, M. J. (1995) Identification of a novel anti-integrin monoclonal antibody that recognises ligand-induced binding site epitope on the α4β1 subunit. FEBS Lett. 363, 118–122.

    Article  PubMed  CAS  Google Scholar 

  5. Woodside, D. G., Teague, T. K., and McIntyre B. W. (1996) Specific inhibition of T lymphocyte coactivation by triggering integrin β1 reveals convergence of β1, β2, and β7 signaling pathways. J. Immunol. 157, 700–706.

    PubMed  CAS  Google Scholar 

  6. Sanchez-Madrid, F. and Springer, T. A. (1986) Production of syrian and armenian hamster monoclonal antibodies of defined specificity. Methods Enzymol. 121, 239–244.

    Article  PubMed  CAS  Google Scholar 

  7. Sonnenberg, A., Daams, H., Van Der Valk, M., Hilkens, J., and Hilgers, J. (1986) Development of mouse mammary gland: identification of stages in differentiation of luminal and myoepithelial cells using monoclonal antibodies and polyvalent antiserum against keratin. J. Histochem Histochem. 34, 1037–1046.

    CAS  Google Scholar 

  8. Delcommenne, M. and Streuli, C. H. (1995) Control of integrin expression by the extracellular matrix. J. Biol. Chem. 270, 26,794–26,801.

    Article  PubMed  CAS  Google Scholar 

  9. Milner, R., Frost, E., Nishimura, S., Delcommenne, M., Streuli, C. H., Pytela, R., and ffrench-Constant, C. (1997) Expression of αvβ3 and αvβ8 integrins during oligodendrocyte precursor differentiation in the presence and absence of axons. Glia 21, 350–360.

    Article  PubMed  CAS  Google Scholar 

  10. De Clercq, L., Cormont, F., and Bazin, H. (1986) Generation of rat-rat hybridomas with the use of the LOU IR983F non secreting fusion cell line. Methods Enzymol. 121, 234–244.

    Article  PubMed  Google Scholar 

  11. Long, W. J., McGuire, W., Palombo, A., and Emini, E. A. (1986) Enhancing the establishment and efficiency of hybridoma cells. Use of irradiated human diploid fibroblast feeder layers. J. Immunol. Methods 86, 89–93.

    Article  PubMed  CAS  Google Scholar 

  12. Galfrè, G and Milstein, C. (1981) Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol. 73B, 3–46.

    Article  Google Scholar 

  13. Pont, S., Naquet, P., Marchetto, S., Regnier-Vigouroux, A., Blanc, D., Pierres, A., and Pierres, M. (1986). Identification of 5 topographic domains of the mouse LFA-1 molecule: subunit assignment and functional involvement in lymphoid cell interactions. J. Immunol. 136, 3750–3759.

    PubMed  CAS  Google Scholar 

  14. Maxfield, S. R., Moulder, K. Koning, F., Elbe, A., Stingl, G., Coligan J. E., Shevach, E. M., and Yokoyama, W. M. (1989). Murine T cells express a cell surface receptor for multiple extracellular matrix proteins. Identification and characterization with monoclonal antibodies. J. Exp. Med. 169, 2173–2190.

    Article  PubMed  CAS  Google Scholar 

  15. Kilshaw, P. J. and Murant, S. J. (1991) Expression and regulation of β7p) integrins on mouse lymphocytes: relevance to the mucosal immune system. Eur. J. Immunol. 21, 2591–2597.

    Article  PubMed  CAS  Google Scholar 

  16. Santini, G. F., Battistin, S., De Paoli, P., Villalta, D., Borean, M., and Basaglia, G (1987) A method for the determination of the adherence of granulocytes to microtitre plates. J. Immunol. Meth. 100, 153–156.

    Article  CAS  Google Scholar 

  17. Miyake, S., Sakkurai, T., Odumura, K., and Yagita, H. (1988). Identification of collagen and laminin receptor integrins on murine T lymphocytes. Eur. J. Immunol. 249, 2000–2005.

    Google Scholar 

  18. Hurley, W. L., Finkelstein, E., and Holst, B. D. (1985) Identification of surface proteins on bovine leukocytes by a biotin-avidin protein blotting techniques. J. Immunol. Nethods 85, 195–202

    Article  CAS  Google Scholar 

  19. Neff, N. T., Lowrey, C., Decker, C., Tovar, A., Damsky, C., Buck, C., and Horwitz, A. F. (1982) A monoclonal antibody detaches embryonic skeletal muscle from extracellular matrices. J. Cell Biol. 95, 654–666.

    Article  PubMed  CAS  Google Scholar 

  20. Davignon, D., Marz, E., Reynolds, T., Kürzinger, K., and Springer, T. A. (1981) Monoclonal antibody to a novel lymphocyte function-associated antigen (LFA-1): mechanism of blockade of T lymphocyte-mediated killing and effects on other T and B lymphocyte functions. J. Immunol. 127, 590–595.

    PubMed  CAS  Google Scholar 

  21. Arnaout, M. A., Todd, R. F., III, Dana, N., Melamed, J., Schlossman, S. F., and Colten, H. R. (1983) Inhibition of phagocytosis of complement C3-or immmunoglobulin G-coated particles and of C3bi binding by monoclonal antibodies to a monocyte-granulocyte membrane glycoprotein (Mo1). J. Clin. Invest. 72, 171–179.

    Article  PubMed  CAS  Google Scholar 

  22. Coller, B. S., Peerschke, E. I., Scudder, L. E., and Sullivan, C. A. (1982) A murine monoclonal antibody that completely blocks the binding of fibrinogen to platelets produces a thrombasthenic-like state in normal platelets and binds to glycopro-teins IIb and/or IIIa. J. Clin. Invest. 72, 325–338.

    Article  Google Scholar 

  23. Springer, T., Galfré, G., Secher, D. S., and Milstein, C. (1979) Mac-1: a macro-phage differentiation antigen identified by monoclonal antibody. Eur. J. Immunol. 9, 301–306.

    Article  PubMed  CAS  Google Scholar 

  24. Miyake, K., Weissman, H., Greenberger, J. S., and Kincade, P. W. (1988). Evidence for a role of the integrin VLA-4 in lympho-hemopoiesis. (1991) J. Exp. Med. 173, 599–607.

    Article  Google Scholar 

  25. Lokeshwar, B. L. and Lin, H. S. (1988) Development and characterization of monoclonal antibodies to murine macrophage colony-stimulating factor. J. Immunol. 141, 483–488.

    PubMed  CAS  Google Scholar 

  26. Taggart, R. T., Samloff, I. M. (1982) Stable antibody-producing murine hybridomas. Science 219, 1228–1230.

    Article  Google Scholar 

  27. Walker, K. Z., Gibson, J., Axiak, S. M., and Prentice, R. L. (1986) Potentiation of hybridoma production by the use of mouse fibroblast conditioned media. J. Immunol. Meth. 88, 75–81.

    Article  CAS  Google Scholar 

  28. Gomathi, K. G., Sharma, E., and Sharma, S. K. (1991) Protein growth factor(s) from C6 glioma cells that promote the growth of murine hybridomas. J. Immunol. Meth. 139, 101–105.

    Article  CAS  Google Scholar 

  29. Yamamoto, R., Lin, L. S., Warren, M. K., and White, T. J. (1990) The human lung fibroblast cell line, MRC-5, produces multiple factors involved with megakaryocytopoiesis. J. Immunol. 144, 1808–1816.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Delcommenne, M., Streuli, C.H. (1999). Production of Rat Monoclonal Antibodies Specific for Mouse Integrins. In: Howlett, A. (eds) Integrin Protocols. Methods in Molecular Biology, vol 129. Humana Press. https://doi.org/10.1385/1-59259-249-X:19

Download citation

  • DOI: https://doi.org/10.1385/1-59259-249-X:19

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-569-0

  • Online ISBN: 978-1-59259-249-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics