Skip to main content

Functional Analysis of the β2 Integrins

  • Protocol
Integrin Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 129))

Abstract

The interaction of integrins with their ligands is an essential step in regulating many cellular functions (1). The β2 integrins, which are exclusively expressed on leukocytes, are of critical importance for leukocyte functions (25). The discovery of an inherited defect in leukocyte adhesion (called leukocyte adhesion deficiency, LAD), caused by the lack of expression of β2 integrins on the cell surface, underscored the important biological role of these receptors in the inflammatory and immune responses (6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hynes, R. O. (1992) Integrins: versatility, modulation and signaling in cell adhesion. Cell 69, 11–26.

    Article  PubMed  CAS  Google Scholar 

  2. Arnaout, M. A. (1990) Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 75, 1037–1050.

    PubMed  CAS  Google Scholar 

  3. Springer, T. A. (1990) Adhesion receptors of the immune system. Nature 345,425.

    Article  Google Scholar 

  4. Gahmberg, C. G, Nortamo, P., Li, R., and Valmu, L. (1992) Leukocyte cell adhesion proteins: from molecular dissection to clinical applications. Ann. Med. 24, 229–335.

    Article  Google Scholar 

  5. Gahmberg, C. G, Tolvanen, M., and Kotovuori, P. (1997) Leukocyte adhesion-structure and function of human leukocyte b2-integrins and their cellular ligands. Eur. J. Biochem. 245, 215–232.

    Article  PubMed  CAS  Google Scholar 

  6. Arnaout, M. A. (1990) Leukocyte adhesion molecule deficiency: its structural basis, pathophysiology and implications for modulating the inflammatory response. [review]. Immunol. Rev. 114, 145–180.

    Article  PubMed  CAS  Google Scholar 

  7. Springer, T. A. (1997) Folding of the N-terminal, ligand-binding region of integrin a-subunits into α β-propeller domain. Proc. Natl. Acad. Sci. USA 94, 65–72.

    Article  PubMed  CAS  Google Scholar 

  8. Lee, J.-O., Rieu P., Arnaout M. A., and Liddington, R. (1995) Crystal Structure of the A-domain from the α-subunit of β2 integrin complement receptor type 3 (CR3, CD11b/CD18). Cell 80, 631–638.

    Article  PubMed  CAS  Google Scholar 

  9. Goodman, T. G. and Bajt, M. L. (1996) Identifying the putative metal ion-dependent adhesion site in the β2 (CD18) subunit required for αLβ2 and αMβ2 ligand interactions. J. Biol. Chem. 271, 23,729–23,736.

    Article  PubMed  CAS  Google Scholar 

  10. Michishita, M., Videm V., and Arnaout, M. A. (1993) A novel divalent cation-binding site in the A domain of the β2 integrin CR3 (CD11b/CD18) is essential for ligand binding. Cell 72, 857–867.

    Article  PubMed  CAS  Google Scholar 

  11. Ueda, T., Rieu P., Brayer J., and Arnaout, M. A. (1994) Identification of the complement iC3b binding site in the β2 integrin CR3 (CD11b/CD18). Proc. Natl. Acad. Sci. USA 91, 10,680–10,684.

    Article  PubMed  CAS  Google Scholar 

  12. Randi, A. M. and Hogg, N. (1994) I Domain of β2 integrin lymphocyte-associated-antigen 1 contains a binding site for ligand intercellular adhesion molecule-1. J. Biol. Chem. 269, 12,395–12,398.

    PubMed  CAS  Google Scholar 

  13. Rieu, P., Ueda T., Haruta I., Sharma C. P., and Arnaou, M. A. (1994) The A-domain of β2 integrin CR3 (CD11b/CD18) is a receptor for the hookworm-derived neutrophil adhesion inhibitor NIF. J. Cell Biol. 127, 2081–2091.

    Article  PubMed  CAS  Google Scholar 

  14. Zhou, L., Lee D. H., Plescia J., Lau C. Y., and Altieri, D. C. (1994) Differential ligand binding specificities of recombinant CD11b/CD18 integrin I-domain. J. Biol. Chem. 269, 17,075–17,079.

    PubMed  CAS  Google Scholar 

  15. Muchowski, P. J., Zhang L., Chang E. R., Soule, H. R., Plow, E. F., and Moyle, M. (1994) Functional interaction between the integrin antagonist neutrophil inhibitory factor and the I domain of CD11b/CD18. J. Biol. Chem. 269, 26,419–26,423.

    PubMed  CAS  Google Scholar 

  16. Qu, A. and Leahy, D. J. (1995) Crystal structure of the I-domain from the CD11a/CD18 (LFA-1, αLβ2) integrin. Proc. Natl. Acad. Sci. USA 92, 10,277–10,281.

    Article  PubMed  CAS  Google Scholar 

  17. Arnaout, M. A., Spits, H., Terhorst, C, Pitt, J., and Todd, R. F., III (1984) Deficiency of a leukocyte surface glycoprotein (LFA-1) in two patients with Mo1 deficiency: effects of cell activation on Mo1/LFA-1 surface expression in normal and deficient leukocytes. J. Clin. Invest. 74, 1291–1300.

    Article  PubMed  CAS  Google Scholar 

  18. Todd, R. F., III, Arnaout, M. A., Rosin, R. E., Crowley, C. A., Peters, W. A., Curnutte, J. T, and Babior, B. M. (1984) Subcellular localization of the subunit of Mo1 (Mo1 alpha; formerly gp110), a surface glycoprotein associated with neutrophil adhesion. J. Clin. Invest. 74, 1280–1290.

    Article  PubMed  CAS  Google Scholar 

  19. Miller, L. J., Bainton, D. F., Borregaard, N., and Springer, T. A. (1987) Stimulated mobilization of monocyte Mac-1 and p150,95 adhesion proteins from an intracellular vesicular compartment to the cell surface. J. Clin. Invest. 80, 535–544.

    Article  PubMed  CAS  Google Scholar 

  20. Detmers, P. A., Wright, S. D., Olsen, E., Kimball, B., and Cohn, Z. A. (1987) Aggregation of complement receptors on human neutrophils in the absence of ligand. J. Cell. Biol. 105, 1137–1145.

    Article  PubMed  CAS  Google Scholar 

  21. Kupfer, A. and Singer, S. J. (1988) Molecular dynamics in the membranes of helper T cells. Proc. Natl. Acad. Sci. USA 85, 8216.

    Article  PubMed  CAS  Google Scholar 

  22. Rieu, P. and Arnaout, M. A. (1996) The structural basis and regulation of β2 integrin interactions, in Adhesion Molecules and the Lung (Ward, P., Fantone, J. C, eds.), Marcel Dekker, New York, NY, pp. 1–42.

    Google Scholar 

  23. Dustin, M. L. and Springer, T. M. (1989) T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341, 619–624.

    Article  PubMed  CAS  Google Scholar 

  24. Altieri, D. C. (1991) Occupancy of CD11b/CD18 (Mac-1) divalent ion binding site(s) induces leukocyte adhesion. J. Immunol. 147, 1891–1896.

    PubMed  CAS  Google Scholar 

  25. Dransfield, I., Cabanas, C, Craig, A., and Hogg, N. (1992) Divalent cation regulation of the function of the leukocyte integrin LFA-1. J. Cell Biol. 116, 219–226.

    Article  PubMed  CAS  Google Scholar 

  26. Kohler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495.

    Article  PubMed  CAS  Google Scholar 

  27. Harlow, E. and Lane, D. (1988) Antibodies. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 285–316.

    Google Scholar 

  28. Arnaout, M. A., Pierce, M., Dana, N., and Clayton, L. K. (1987) Complement receptor type 3 (CR3): structure and function, in Methods In Enzymology, vol. 150 (DiSabato, G., Langone, J. J., and VanVanaskis, H., eds.), Acad. Press, FL, pp. 602–615.

    Google Scholar 

  29. Arnaout, M. A. (1993) Dynamics and regulation of leukocyte-endothelial interactions. Curr. Opin. Hematol. 1, 113–122.

    Google Scholar 

  30. Languino, L. R., Plescia, J., Duperray, A., Brain, A. A., Plow, E. F., Geltosky, J. E., and Altieri, D. C. (1993) Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1-dependent pathway. Cell 73, 1423–1434.

    Article  PubMed  CAS  Google Scholar 

  31. Dustin, M. L., Rothlein, R., Bhan, A. K., Dinarello, C. A., and Springer, T. A. (1986) A natural adherence molecule (ICAM-1): induction by IL1 and interferon-gamma, tissue distribution, biochemistry and function. J. Immunol. 137,245–254.

    PubMed  CAS  Google Scholar 

  32. Rothlein, R., Czajkowski, M., O’Neil, M. M., Marlin, S. D., Mainolfi, E., and Merluzzi, V. J. (1988) Induction of intercellular adhesion molecule 1 on primary and continuous cell lines by pro-inflammatory cytokines. J. Immunol. 141, 1665–1669.

    PubMed  CAS  Google Scholar 

  33. de Fougerolles, A. D., Stacker, S. A., Schwarting, R., and Springer, T. A. (1991) Characterization of ICAM-2 and evidence for a third counter-receptor for LFA-1. J. Exp. Med. 174, 253–267.

    Article  PubMed  Google Scholar 

  34. Nortamo, P., Salcedo, R., Timonen, T., Patarroyo, M., and Gahmberg, C. G (1991) A monoclonal antibody to the human leukocyte adhesion molecule intercellular adhesion molecule-2. J. Immunol. 146, 2530–2535.

    PubMed  CAS  Google Scholar 

  35. Rothlein, R., Mainolfi, E., Czajkowski, M., and Marlin, S. D., (1991) A form of circulating ICAM-1 in human serum. J. Immunol. 147, 3788–3793.

    PubMed  CAS  Google Scholar 

  36. Staunton, D. E., Ockenhouse, C. F., and Springer, T. A. (1992) Soluble intercellular adhesion molecule 1-immunoglobulin G1 immunoadhesin mediates phagocytosis of malaria-infected erythrocytes. J. Exp. Med. 176, 1471–1476.

    Article  PubMed  CAS  Google Scholar 

  37. Welder, C. A., Lee, D. H. S., and Takei, F. (1993) Inhibition of cell adhesion by microspheres coated with recombinant soluble intercellular adhesion molecule-1. J. Immunol. 150, 2203–2210.

    PubMed  CAS  Google Scholar 

  38. Reilly, P. L., Woska, J. R., Jeanfavre, D. D., McNally, E., Rothlein, R., and Bormann, B.-J. (1995) The native structure of intercellular adhesion molecule-1 (ICAM-1) is a dimer. J. Immunol. 155, 529–532.

    PubMed  CAS  Google Scholar 

  39. Miller, L. J., Knorr, R., Ferrone, M., Houdei, R., Carron, C. P., and Dustin, M. L. (1995) Intercellular adhesion molecule-1 dimerization and its consequences for adhesion mediated by lymphocyte function-associated antigen-1. J. Exp. Med. 182,1231–1241.

    Article  PubMed  CAS  Google Scholar 

  40. Xie, J., Li, R., Kotovuori, P., Vermot-Desroches, C, Wijdenes, J., Arnaout, M. A., Nortamo, P., and Gahmberg, C. G. (1995) Intercellular adhesion molecule-2 (CD102) binds to the leukocyte integrin CD11b/CD18 through the A domain. J. Immunol. 155, 3619–3628.

    PubMed  CAS  Google Scholar 

  41. Arnaout, M. A., Todd, R. F., III, Dana, N., Melamed, J., Schlossman, S. F., and Colten, H. R. (1983) Inhibition of phagocytosis of complement C3-or immunoglobulin G-coated particles and of iC3b binding by monoclonal antibodies to a monocyte-granulocyte membrane glycoprotein (Mo1). J. Clin. Invest. 72,171–179.

    Article  PubMed  CAS  Google Scholar 

  42. Rothlein, R. and Springer T. A. (1985) Complement receptor type three-dependent degradation of opsonized erythrocytes by mouse macrophages. J. Immunol. 135, 2668–2672.

    PubMed  CAS  Google Scholar 

  43. O’Rear, L. D. and Ross G D. (1994) Assays for membrane complement receptors, in Current Protocols in Immunology, vol supplement 10, Wiley, New York, NY, pp. 13.4.1–13.4.18.

    Google Scholar 

  44. Cai, T. Q. and Wright, S. D. (1995) Energetics of leukocyte integrin activation. J. Biol. Chem. 270, 14,358–14,365.

    Article  PubMed  CAS  Google Scholar 

  45. Cai, T. Q., Law, S. K., Zhao, H. R., and Wright, S. D. (1995) Reversible inactivation of purified leukocyte integrin CR3 (CD11b/CD18, alpha m beta 2) by removal of divalent cations from a cryptic site. Cell Adhes. Commun. 3, 399–406.

    Article  PubMed  CAS  Google Scholar 

  46. Altieri, D. C, Plescia, J., and Plow, E. (1993) The structural motif glycine 190-valine 202 of the fibrinogen g chain interacts with CD11b/CD18 integrin (αMβ2, Mac-1) and promote leukocyte adhesion. J. Biol. Chem. 268, 1847–1853.

    PubMed  CAS  Google Scholar 

  47. Li, R., Xie, J., Kantor, C, Koistinen, V., Altieri, D. C, Nortamo, P., and Gahmberg, C. G. (1995) A peptide derived from the intercellular adhesion molecule-2 regulates the avidity of the leukocyte integrins CD11b/CD18 and CD11c/CD18. J. Cell Biol. 129, 1143–1153.

    Article  PubMed  CAS  Google Scholar 

  48. Li, R, Nortamo, P., Valmu, L., Tolvanen, M., Huuskonen, J., Kantor, C, and Gahmberg, C. G (1993) A peptide from ICAM-2 binds to the leukocyte integrin CD11a/CD18 and inhibits endothelial cell adhesion. J. Biol. Chem. 268, 17,513–17,518.

    PubMed  CAS  Google Scholar 

  49. Diamond, M. S., Staunton, D. E., DeFougerolles, A. R., Stacker, S. A., Garcia-Aguilar, J., Hibbs, M. L., and Springer, T. A (1990) ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J. Cell Biol. 111, 3129–3139.

    Article  PubMed  CAS  Google Scholar 

  50. Van Strijp, J. A. G, Russell, D. G, Tuomanen, E., Brown, E. J., and Wright, S. D. (1993) Ligand specificity of purified complement receptor type three (CD11b/CD18, αMβ2, Mac-1). J. Immunol. 151, 3324–3336.

    PubMed  Google Scholar 

  51. Miller, J. M., Schwarting, R., and Springer, T. A. (1986) Regulated expression of the Mac-1, LFA-1, p150,95 glycoprotein family during leukocyte differentiation. J. Immunol. 137, 2891–2900.

    PubMed  CAS  Google Scholar 

  52. Lee, J.-O., Anne-Bankston, L., Arnaout, M. A., and Liddington, R. C. (1995) Two conformations of the integrin A-domain (I-domain): a pathway for activation? Structure 3, 1333–1340.

    Article  PubMed  CAS  Google Scholar 

  53. Winzor, D. J. Sawyer, W. H. (1995) Quantitative Characterization of Ligand Binding. Wiley-Liss, Inc. 1–11.

    Google Scholar 

  54. Li, R., Nortamo, P., Kantor, C., Kovanen, P., Timonen, T., and Gahmberg, C. G. (1993) A leukocyte integrin binding peptide from intercellular adhesion molecule-2 stimulates T cell adhesion and natural killer cell activity. J. Biol. Chem. 268, 21,474–21,477.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Li, R., Arnaout, M.A. (1999). Functional Analysis of the β2 Integrins. In: Howlett, A. (eds) Integrin Protocols. Methods in Molecular Biology, vol 129. Humana Press. https://doi.org/10.1385/1-59259-249-X:105

Download citation

  • DOI: https://doi.org/10.1385/1-59259-249-X:105

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-569-0

  • Online ISBN: 978-1-59259-249-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics