Skip to main content

Development of Replication-Defective Herpes Simplex Virus Vectors

  • Protocol
Gene Therapy Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 69))

Abstract

A greater understanding of the molecular, biochemical, and genetic factors involved in the progression of a specific disease state has led to the development of genetic therapies using direct gene transfer to ameliorate the disease condition or correct a genetic defect in situ. Effective gene therapy approaches require delivery strategies and vehicles that 1) efficiently deliver the therapeutic gene(s) to a sufficient number of dividing or nondividing cells to achieve the desired therapeutic effect; 2) persist long term within the cell without disturbing host cell functions; and 3) can regulate the level and duration of therapeutic gene expression for diseases that may either require high-level transient transgene expression or continuous low-level synthesis of the therapeutic product. Numerous viral and nonviral vectors have been employed to treat a variety of genetic and acquired diseases. Each vector system has its own particular advantages and disadvantages that will suit it to a specific therapeutic application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akkaraju G. R., Huard J., Hoffman E. P., et al. (1999) Herpes simplex virus vector-mediated dystrophin gene transfer and expression in MDX mouse skeletal muscle. J. Gene Med. 1, 280–289.

    PubMed  CAS  Google Scholar 

  2. Krisky D. M., Marconi P. C., Oligino T. J., et al. (1998) Development of herpes simplex virus replication defective multigene vectors for combination gene therapy applications. Gene Ther. 5, 1517–1530.

    PubMed  CAS  Google Scholar 

  3. Dressler G., Rock D., and Fraser N. (1987) Latent herpes simplex virus typy 1 DNA is not extensively methylated in vivo. J. Gen. Virol. 68, 1761–1765.

    PubMed  CAS  Google Scholar 

  4. Mellerick D. M. and Fraser N. (1987) Physical state of the latent herpes simplex virus genome in a mouse model system: evidence suggesting an episomal state. Virology 158, 265–275.

    PubMed  CAS  Google Scholar 

  5. Rock D. and Fraser N. (1985) Latent herpes simplex virus type 1 DNA contains two copies of the virion DNA joint region. J. Virol. 55, 849–852.

    PubMed  CAS  Google Scholar 

  6. Croen K. D., Ostrove J. M., Dragovic L. J., Smialek J. E., and Straus S. E. (1987) Latent herpes simplex virus in human trigeminal ganlia. Detection of an immediate early gene “anti-sense” transcript by in situ hybridization. N. Engl. J. Med. 317, 1427–1432.

    PubMed  CAS  Google Scholar 

  7. Deatly A. M., Spivack J. G., Lavi E., and Fraser N. W. (1987) RNA from an immediate early region of the HSV-1 genome is present in the trigeminal ganglia of latently infected mice. Proc. Natl. Acad. Sci. USA 84, 3204–3208.

    PubMed  CAS  Google Scholar 

  8. Gordon Y. J., Johnson B., Romanonski E., and Araullo-Cruz T. (1988) RNA complementary to herpes simplex virus type 1 ICP0 gene demonstrated in neurons of human trigeminal ganglia. J. Virol. 62, 1832–1835.

    PubMed  CAS  Google Scholar 

  9. Rock D. L., Nesburn A. B., Ghiasi H., et al. (1987) Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J. Virol. 61, 3820–3826.

    PubMed  CAS  Google Scholar 

  10. Spivack J. G. and Fraser N. W. (1987) Detection of herpes simplex virus type 1 transcripts during latent infection in mice. J. Virol. 61, 3841–3847.

    PubMed  CAS  Google Scholar 

  11. Stevens J. G., Wagner E. K., Devi-Rao G. B., Cook M. L., and Feldman L. T. (1987) RNA complementary to a herpesviruses α gene mRNA is prominent in latently infected neurons. Science 255, 1056–1059.

    Google Scholar 

  12. Fareed M. and Spivack J. (1994) Two open reading frames (ORF1 and ORF2) within the 2.0-kilobase latency-associated transcript of herpes simplex virus type 1 are not essential for reactivation from latency. J. Virol. 68, 8071–8081.

    PubMed  CAS  Google Scholar 

  13. Hill J. M., Sedarati F., Javier R. T., Wagner E. K., and Stevens J. G. (1990) Herpes simplex virus latent phase transcription facilitiates in vivo reactivation. Virology 174, 117–125.

    PubMed  CAS  Google Scholar 

  14. Ho D. Y. and Mocarski E. S. (1989) Herpes simplex virus latent RNA (LAT) is not required for latent infection in the mouse. Proc. Natl. Acad. Sci. USA 86, 7596–7600.

    PubMed  CAS  Google Scholar 

  15. Javier R. T., Stevens J. G. Dissette V. B., and Wagner E. K. (1988) A herpes simplex virus transcript abundant in latently infected neurons is dispensible for establishment of the latent state. Virology 166, 254–257.

    PubMed  CAS  Google Scholar 

  16. Leib D. A., Bogard C.L. Kosz-Vnenchak M., et al. (1989b) A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent infection. J. Virol. 63, 2893–2900.

    PubMed  CAS  Google Scholar 

  17. Sedarati F., Izumi K. M., Wagner E. K., and Stevens J. G. (1989) Herpes simplex virus type 1 latency-associated transcript plays no role in establishment or maintenance of a latent infection in murine sensory neurons. J. Virol. 63, 4455–4458.

    PubMed  CAS  Google Scholar 

  18. Steiner I., Spivack J. G., Lirette R. P., et al. (1989) Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EMBO J. 8, 505–511.

    PubMed  CAS  Google Scholar 

  19. Roizman B. and Sears A. (1996) Herpes simplex viruses and their replication, in Fields Virology (Fields B. N., et al., eds.), Lippincott-Raven. Philadelphia, pp. 2231–2295.

    Google Scholar 

  20. Spear P. (1993a) Membrane fusion induced by herpes simplex virus, in Viral Fusion Mechanisms (Bentz J., ed.), CRC, Boca Raton, pp. 201–232.

    Google Scholar 

  21. Spear P.G. (1993b) Entry of alphaherpesviruses into cells. Semin. Virol. 4, 167–180.

    CAS  Google Scholar 

  22. Kwong A. D. and Frenkel N. (1987) Herpes simplex virus-infected cells contain a function(s) that destablizes both host and viral mRNAs. Proc. Natl. Acad. Sci. USA 84, 1926–1930.

    PubMed  CAS  Google Scholar 

  23. Kwong A. D., Kruper J. A., and Frenkel N. (1988) Herpes simplex virus virion host shutoff function. J. Virol. 62, 912–921.

    PubMed  CAS  Google Scholar 

  24. Oroskar A. and Read G. (1989) Control of mRNA stability by the virion host shutoff function of herpes simplex virus. J. Virol. 63, 1897–1906.

    PubMed  CAS  Google Scholar 

  25. Read G. S. and Frenkel N. (1983) Herpes simplex virus mutants defective in the virion-associated shutoff of host polypeptide synthesis and exhibiting abnormal synthesis of α (immediate early) viral polypeptides. J. Virol. 46, 498–512.

    PubMed  CAS  Google Scholar 

  26. Ace C. I., McKee T. A., Ryan J. M., Cameron J. M., and Preston C. M. (1989) Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate-early gene expression. J. Virol. 63, 2260–2269.

    PubMed  CAS  Google Scholar 

  27. Batterson W. and Roizman B. (1983) Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha-genes. J. Virol. 46, 371–377.

    PubMed  CAS  Google Scholar 

  28. Campbell M. E. M. Palfeyman J. W., and Preston C. M. (1984) Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. J. Mol. Biol. 180, 1–19.

    PubMed  CAS  Google Scholar 

  29. Kristie J. and Roizman B. (1987) Host cell proteins bind to the cis-acting site required for virion-mediated induction of herpes simplex virus 1 alpha genes. Proc. Natl. Acad. Sci. USA 84, 71–75.

    PubMed  CAS  Google Scholar 

  30. McKnight J. L. C., Kristie T. M., and Roizman B. (1987) Binding of the virion protien mediating α gene induction in herpes simplex virus 1-infected cells to its cis site requires cellular proteins. Proc. Natl. Acad. Sci. USA 84, 7061–7065.

    PubMed  CAS  Google Scholar 

  31. Post L., Mackem S., and Roizman B. (1981) Regulation of alpha genes of herpes simplex virus: expression of chimeric genes produced by fusion of thymidine kinase with alpha gene promoters. Cell 24, 555–565.

    PubMed  CAS  Google Scholar 

  32. Newcomb W. and Brown J. (1994) Induced extrusion of DNA from the capsid of herpes simplex virus type 1. J. Virol. 68, 443-440.

    Google Scholar 

  33. McGeoch D. J., Dolan A., Donald S., and Rixon F.J. (1985) Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. J. Mol. Biol. 181, 1–13.

    PubMed  CAS  Google Scholar 

  34. McGeoch D. J., Dolan A., Donald S., and Brauer D. H. K. (1986) Complete DNA sequence of short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Res. 14, 1727–1744.

    PubMed  CAS  Google Scholar 

  35. McGeoch D. J., Dalrymple M. A., Davison A. J., et al. (1988) The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol. 69, 1531–1574.

    PubMed  CAS  Google Scholar 

  36. McGeoch D. J., Cunningham C., McIntyre G., and Dolan A. (1991) Comparative sequence analysis of the long repeat regions and adjoining parts of the long unique regions in the genomes of herpes simplex viruses types 1 and 2. J. Gen. Virol. 72, 3057–3075.

    PubMed  CAS  Google Scholar 

  37. Gruenheid S., Gatzke L., Meadows H., and Tufaro F. (1993) Herpes simplex virus infection and propagation in a mouse L cell mutant lacking heparan sulfate proteoglycans. J. Virol. 67, 93–100.

    PubMed  CAS  Google Scholar 

  38. Herold B., Visalli R., Susmarski N., Brandt C., and Spear P. (1994) Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulfate and glycoprotein B. J. Gen. Virol. 75, 1211–1222.

    PubMed  CAS  Google Scholar 

  39. Laquerre S., Argnani R., Anderson D. B., et al. (1998) Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C which differ in their contribution to virus attachment, penetration, and cell-to-cell spread. J. Virol. 72, 6119–6130.

    PubMed  CAS  Google Scholar 

  40. Krummenacher C., Nicola A. V., Whitbeck J. C., et al. (1998) Herpes simplex virus glycoprotein D can bind to poliovirus receptor-related protein 1 or herpesvirus entry mediator, two structurally unrelated mediators of virus entry. J. Virol. 72, 7064–7074.

    PubMed  CAS  Google Scholar 

  41. Montgomery R. I., Warner M. S., Lum B. J., and Spear P. (1996) G. Herpes simplex virus 1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87, 427–436.

    PubMed  CAS  Google Scholar 

  42. Rux A., Willis S., Nicola A. V., et al. (1998) Functional region IV of glycoprotein D from herpes simplex virus modulates glycoprotein binding to the herpesvirus entry mediator. J. Virol. 72, 7091–7098.

    PubMed  CAS  Google Scholar 

  43. Sarrias M. R., Whitbeck J. C., Rooney I., et al. (1999) Inhibition of herpes simpex virus gD and lymphotoxin-alpha binding to HveA by peptide antagonists. J. Virol. 73, 5681–5687.

    PubMed  CAS  Google Scholar 

  44. Terry-Allison T., Montgomery R., Whitbeck J., et al. (1998) HveA (herpesvirus entry mediator A), a coreceptor for herpes simplex virus entry, also participates in virus-induced cell fusion. J. Virol. 72, 5802–5810.

    PubMed  CAS  Google Scholar 

  45. Whitbeck J., Muggeridge M., Rux A., et al. (1999) The major neutralizing antigenic site on herpes simplex virus glycoprotein D overlaps a receptor-binding domain. J. Virol. 73, 9879–9890.

    PubMed  CAS  Google Scholar 

  46. Cocchi F., Lopez M., Menotti L., et al. (1998) The V domain of herpesvirus Iglike receptor (HIgR) contains a major functional region in herpes simplex virus-1 entry into cells and interacts physically with the viral glycoprotein D. Proc. Natl. Acad. Sci. USA 95, 15700–15705.

    PubMed  CAS  Google Scholar 

  47. Geraghty R. J., Krummenacher C., Cohen G. H., Eisenberg R. J., and Spear P. G. (1998) Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 280, 1618–1620.

    PubMed  CAS  Google Scholar 

  48. Krummenacher C., Baribaud I., Ponce De Leon M., et al. (2000) Localization of a binding site for herpes simplex virus glycoprotein D on herpesivrus entry mediator C by using antireceptor monoclonal antibodies. J. Virol. 74, 10863–10872.

    PubMed  CAS  Google Scholar 

  49. Shukla D., Dal Canto M. C., Rowe C. L., and Spear P. G. (2000) Striking similarity of murine nectin-1 alpha to human nectin-1 alpha (HveC) in sequence and activity as a glycoprotein D receptor for alphaherpesvirus entry. J. Virol. 74, 11773–11781.

    PubMed  CAS  Google Scholar 

  50. Fuller A. O. and Spear P. G. (1985) Specificities of monoclonal and polyclonal antibodies that inhibit adsorption of herpes simplex virus to cells and lack of inhibition by potent neutralizing antibodies. J. Virol. 55, 475–482.

    PubMed  CAS  Google Scholar 

  51. Highlander S. L., Sutherland S. L., Gage P. J., et al. (1987) Neutralizing monoclonal antibodies specific for herpes simplex virus glycoprotein D inhibit virus penetration. J. Virol. 61, 3356–3364.

    PubMed  CAS  Google Scholar 

  52. Ligas M. and Johnson D. (1988) A herpes simplex virus mutant in which glycoprotein D sequences are replaced by β-galactosidase sequences binds to but is unable to penetrate into cells. J. Virol. 62, 1486–1494.

    PubMed  CAS  Google Scholar 

  53. Nicola A. V., Ponce de Leon M., Xu R., et al. (1998) Monoclonal antibodies to distinct sites on herpes simplex virus (HSV) glycoprotein D block HSV binding to HVEM.J. J. Virol. 72, 3595–3601.

    PubMed  CAS  Google Scholar 

  54. Cai W., Gu B., and Person S. (1988) Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. J. Virol. 62, 2596–2604.

    PubMed  CAS  Google Scholar 

  55. Desai P., Schaffer P., and Minson A. (1988) Excretion of non-infectious virus particles lacking glycoprotein H by a temperature-sensitive mutant of herpes-simplex virus type 1: evidence that gH is essential for virion infectivity. J. Gen. Virol. 69, 1147–1156.

    PubMed  CAS  Google Scholar 

  56. Hutchinson L., Browne H., Wargent V., et al. (1992) A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J. Virol. 66, 2240–2250.

    PubMed  CAS  Google Scholar 

  57. Hutchinson L., Goldsmith K., Snoddy D., et al. (1992) Identification and characterization of a novel herpes simplex virus glycoprotein, gK, involved in cell fusion. J. Virol. 66, 5603–5609.

    PubMed  CAS  Google Scholar 

  58. Roizman B. and Sears A. E. (1990) Herpes simplex viruses and their replication, in Field’s Virology (Fields B. N., et al., eds.), Raven, New York, pp. 1795–1841.

    Google Scholar 

  59. Roizman B. and Sears A. E. (1993) Herpes simplex viruses and their replication, in The Human Herpesviruses (Roizman B., Whitley R. J., and Lopez C., eds.), Raven, New York, pp. 11–68.

    Google Scholar 

  60. Honess R. and Roizman B. (1974) Regulation of herpes simplex virus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J. Virol. 14, 8–19.

    PubMed  CAS  Google Scholar 

  61. Honess R. W. and Roizman B. (1975) Regulation of herpes virus macromolecular synthesis: sequential transition of polypeptide synthesis requires functional viral polypeptides. Proc. Natl. Acad. Sci. USA 72, 1276–1280.

    PubMed  CAS  Google Scholar 

  62. DeLuca N.A. and Schaffer P. A. (1985) Activation of immediate-early, early, and late promoters by temperature-sensitive and wild-type forms of herpes simplex virus type 1 protein ICP4. Mol. Cell. Biol. 5, 1997–2008.

    PubMed  CAS  Google Scholar 

  63. Dixon R. A. F. and Schaffer P. A. (1980) Fine-structure mapping and functional analysis of temperature-sensitive mutants in the gene encoding the herpes simplex virus type 1 immediate early protein VP175. J. Virol. 36, 189–203.

    PubMed  CAS  Google Scholar 

  64. O’Hare P. and Hayward G. (1985) Three trans-acting regulatory proteins of herpes simplex virus modulate immediate-early gene expression in a pathway involving positive and negative feed regulation. J. Virol. 56, 723–733.

    PubMed  Google Scholar 

  65. O’Hare P. and Hayward G. S. (1985) Evidence for a direct role for both the 175,000 and 110,000-molecular-weight immediate-early protein of herpes simplex vius in transactivation of delayed-early promoters. J. Virol. 53, 751–760.

    PubMed  Google Scholar 

  66. Preston C. (1979) Abnormal properties of an immediate early polypeptide in cells infected with the herpes simplex virus type 1 mutant tsK. J. Virol. 32, 357–369.

    PubMed  CAS  Google Scholar 

  67. Sacks W. R. and Schaffer P. A. (1987) Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture. J. Virol. 61, 829–839.

    PubMed  CAS  Google Scholar 

  68. Stow N. and Stow E. (1986) Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw 110. J. Gen. Virol. 67, 2571–2585.

    PubMed  CAS  Google Scholar 

  69. Watson R. and Clements J. (1980) A herpes simplex virus type 1 function continuously required for early and late virus RNA synthesis. Nature 285, 329–330.

    PubMed  CAS  Google Scholar 

  70. Holland L. E., Anderson K. P., Shipman C., and Wagner E. K. (1980) Viral DNA synthesis is required for efficient expression of specific herpes simplex virus type 1 mRNA. Virology 101, 10–24.

    PubMed  CAS  Google Scholar 

  71. Mavromara-Nazos P. and Roizman B. (1987) Activation of herpes simplex virus 1 γ2 genes by viral DNA replication. Virology 161, 593–598.

    PubMed  CAS  Google Scholar 

  72. Cook M. L. and Stevens J. G. (1973) Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence of intra-axonal transport of infection. Infect. Immun. 7, 272–288.

    PubMed  CAS  Google Scholar 

  73. Stevens J.G. (1989) Human herpesviruses: a consideration of the latent state. Microbiol. Rev. 53, 318–332.

    PubMed  CAS  Google Scholar 

  74. Deshmane S. L. and Fraser N. W. (1989) During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure. J. Virol. 63, 943–947.

    PubMed  CAS  Google Scholar 

  75. Johnson P. A., Miyanohara A., Levine F., Cahill T., and Friedmann T. (1992) Cytotoxicity of a replication-defective mutant herpes simplex virus type 1. J. Virol. 66, 2952–2965.

    PubMed  CAS  Google Scholar 

  76. Leiden J., Frenkel N., and Rapp F. (1980) Identification of the herpes simplex virus DNA sequences present in six herpes simplex virus thymidine kinase-trans-formed mouse cell lines. J. Virol. 33, 272–285.

    PubMed  CAS  Google Scholar 

  77. DeLuca N. A., McCarthy A.M., and Schaffer P. A. (1985) Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J. Virol. 56, 558–570.

    PubMed  CAS  Google Scholar 

  78. Sacks W., Greene C., Aschman D., and Schaffer P. (1985) Herpes simplex virus type 1 ICP27 is essential regulatory protein. J. Virol. 55, 796–805.

    PubMed  CAS  Google Scholar 

  79. Samaniego L., Webb A. and DeLuca N. (1995) Functional interaction between herpes simplex virus immediate-early proteins during infection: gene expression as a consequence of ICP27 and different domains of ICP4. J. Virol. 69, 5705–5715.

    PubMed  CAS  Google Scholar 

  80. Katan M., Haigh A., Verrijzer C., Vliet P. v. d., and O’Hare P. (1990) Characterization of a cellular factor which interacts functionally with Oct-1 in the assembly of a multicomponent transcription complex. Nucleic Acids Res. 18, 6871–6880.

    PubMed  CAS  Google Scholar 

  81. Kristie T. and Sharp P. (1993) Purification of the cellular C1 factor required for the stable recognition of the Oct-1 homeodomain by herpes simplex virus α-trans-induction factor (VP16). J. Biol. Chem. 268, 6525–6534.

    PubMed  CAS  Google Scholar 

  82. Werstuck G. and Capone J. (1993) An unusual cellular factor potentiates protein-DNA complex assembly Oct-1 and Vmw65. J. Biol. Chem. 268, 1272–1278.

    PubMed  CAS  Google Scholar 

  83. Wilson A., LaMarco K., Peterson M., and Herr W. (1993) The VP16 accessory protein HCF is a family of polypeptides processed from a large precursor protein. Cell 74, 115–125.

    PubMed  CAS  Google Scholar 

  84. Xiao P. and Capone J. (1990) A cellular factor binds to the herpes simplex virus type 1 transactivator Vmw65 and is required for Vmw65-dependent protein-DNA complex assembly with Oct-1. Mol. Cell. Biol. 10, 4974–4977.

    PubMed  CAS  Google Scholar 

  85. Gerster T. and Roeder R. (1988) A herpesvirus trans-activating protein interacts with transcription factor OTF-1 and other cellular proteins. Proc. Natl. Acad. Sci. USA 85, 6347–6351.

    PubMed  CAS  Google Scholar 

  86. O’Hare P. and Goding C. (1988a) Herpes simplex virus regulatory elements and the immunoglobulin octamer domain bind a common factor and are both targets for virion transactivation. Cell 52, 435–445.

    PubMed  Google Scholar 

  87. O’Hare P., Goding C. and Haigh A. (1988b) Direct combinational interaction between a herpes simplex virus regulatory protein and a cellular octamer binding factor mediates specific induction of virus immediate-early gene expression. EMBO J. 7, 4231–4238.

    PubMed  Google Scholar 

  88. Preston C., Frame M., and Campbell M. (1988) A complex formed between cell components and an HSV structural polypeptide binds to a viral immediate early gene regulatory DNA sequence. Cell 52, 425–434.

    PubMed  CAS  Google Scholar 

  89. Stern S., Tanaka M., and Herr W. The Oct-1 homeodomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16. Nature (1989) 341, 624–630.

    Google Scholar 

  90. Cai W. and Schaffer P. A. (1992) Herpes simplex virus type 1 ICP0 regulates expression of immediate-early, early, and late genes in productively infected cells. J. Virol. 66, 2904–2915.

    PubMed  CAS  Google Scholar 

  91. Everett R. D. (1987) The regulation of transcription of viral and cellular genes by herpesvirus immediate-early gene products. Anticancer Res. 7, 589–604.

    PubMed  CAS  Google Scholar 

  92. Gelman I. H. and Silverstein S. (1985) Identification of immediate-early genes from herpes simplex virus that transactivate the virus thymidine kinase gene. Proc. Natl. Acad. Sci. USA 82, 5265–5269.

    PubMed  CAS  Google Scholar 

  93. Quinlan M. P. and Knipe D. M. (1985) Stimulation of expression of a herpes simplex virus DNA-binding protein by two viral factors. Mol. Cell. Biol. 5, 957–963.

    PubMed  CAS  Google Scholar 

  94. Zhu Q and Courtney R. J. (1994) Chemical cross-linking of virion envelope and tegument proteins of herpes simplex virus type 1. Virology 204, 590–599.

    PubMed  CAS  Google Scholar 

  95. Maul G. and Everett R. (1994) The nuclear location of PML, a cellular member of the C3HC4 zinc-binding domain protein family, is rearranged during herpes simplex virus infection by the C3HC4 viral protein ICP0. J. Gen. Virol. 75, 1223–1233.

    PubMed  CAS  Google Scholar 

  96. Chen J. and Silverstein S. (1992) Herpes simplex viruses with mutations in the gene encoding ICP0 are defective in gene expression. J. Virol. 66, 2916–2927.

    PubMed  CAS  Google Scholar 

  97. Samaniego L., Wu N., and DeLuca N. A. (1997) The herpes simplex virus immediate-early protein ICP0 affects transcription from the viral genome and infected-cell survival in the absence of ICP4 and ICP27. J. Virol. 71, 4614–4625.

    PubMed  CAS  Google Scholar 

  98. Rice S., Long M., Lam V., and Spencer C. (1994) RNA polymerase II is aberrantly phosphorylated and localized to viral replication compartments following herpes simplex virus infection. J. Virol. 68, 988–1001.

    PubMed  CAS  Google Scholar 

  99. Hill A., P. Jugovic I. York, et al. (1995) Herpes simplex virus turns off the TAP to evade host immunity. Nature 375, 411–415.

    PubMed  CAS  Google Scholar 

  100. Hill A. and Ploegh H. (1995) Getting the inside out: the transporter associated with antigen processing (TAP) and the presentation of viral antigen. Proc. Natl. Acad. Sci. USA 92, 341–343.

    PubMed  CAS  Google Scholar 

  101. York I., Roop C., Andrews D., et al. (1994) A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 77, 525–535.

    PubMed  CAS  Google Scholar 

  102. Johnson P., Wang M., and Friedmann T. (1994) Improved cell survival by the reduction of immediate-early gene expression in replication-defective mutants of herpes simplex virus type 1 but not by mutation of the viron host shutoff function. J. Virol. 68, 6347–6362.

    PubMed  CAS  Google Scholar 

  103. Krisky D. M., Wolfe D., Goins W. F., et al. (1998) Deletion of multiple immediate early genes from herpes simplex virus reduces cytotoxicity and permits longterm gene expression in neurons. Gene Ther. 5, 1593–1603.

    PubMed  CAS  Google Scholar 

  104. Marconi P., Krisky D., Oligino T., et al. (1996) Replication-defective HSV vectors for gene transfer in vivo. Proc. Natl. Acad. Sci. USA 93, 11319–11320.

    PubMed  CAS  Google Scholar 

  105. Samaniego L. A., Neiderhiser L., and DeLuca N. A. (1998) Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J. Virol. 72, 3307–3320.

    PubMed  CAS  Google Scholar 

  106. Wu N., Watkins S. C., Schaffer P. A., and DeLuca N. A. (1996) Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27, and ICP22. J. Virol. 70, 6358–6368.

    PubMed  CAS  Google Scholar 

  107. McCarthy A. M., McMahan L., and Schaffer P. A. (1989) Herpes simplex virus type 1 ICP27 deletion mutants exhibit altered patterns of transcription and are DNA deficient. J. Virol. 63, 18–27.

    PubMed  CAS  Google Scholar 

  108. Fink D., DeLuca N., Goins W., and Glorioso J. (1996) Gene transfer to neurons using herpes simplex virus-based vectors. Annu. Rev. Neurosci. 19, 265–287.

    PubMed  CAS  Google Scholar 

  109. Oligino T., Poliani P. L., Marconi P., et al. (1996) In vivo transgene activation from an HSV-based gene vector by GAL4:VP16. Gene Ther. 3, 892–899.

    PubMed  CAS  Google Scholar 

  110. Frenkel N., Locker H., Batterson W., Hayward G., and Roizman B. (1976) Anatomy of herpes simplex DNA. VI. Defective DNA originates from the S component. J. Virol. 20, 527–531.

    PubMed  CAS  Google Scholar 

  111. Krisky D. M., Marconi P. C., Oligino T., et al. (1997) Rapid method for construction of recombinant HSV gene transfer vectors. Gene Ther. 4, 1120–1125.

    PubMed  CAS  Google Scholar 

  112. Southern E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.

    PubMed  CAS  Google Scholar 

  113. Graham F. L. and Van der Eb A. J. (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456–467.

    PubMed  CAS  Google Scholar 

  114. Shapira M., Homa F. L., Glorioso J. C., and Levine M. (1987) Regulation of the herpes simplex virus type 1 late (γ2) glycoprotein C gene: sequences between base pairs −34 to +29 control transient expression and responsiveness to transactivation by the products of immediate early (α) 4 and 0 genes. Nucleic Acids Res. 15, 3097–3111.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Goins, W.F., Krisky, D.M., Wolfe, D.P., Fink, D.J., Glorioso, J.C. (2002). Development of Replication-Defective Herpes Simplex Virus Vectors. In: Morgan, J.R. (eds) Gene Therapy Protocols. Methods in Molecular Medicine, vol 69. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-141-8:481

Download citation

  • DOI: https://doi.org/10.1385/1-59259-141-8:481

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-723-6

  • Online ISBN: 978-1-59259-141-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics