Skip to main content

Simian Foamy Virus Vectors

Preparation and Use

  • Protocol
Gene Therapy Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 69))

Abstract

The life cycle of retroviruses involves stable integration of viral genetic material into the host genome; expression of viral genes is, in part, regulated by host cell factors (1). These features make retroviruses a widely used efficient means for introducing foreign DNA into the cell genome. Most retroviral vector systems used in clinical gene transfer are based on murine leukemia virus (MuLV) (2,3). MuLV replication is cell cycle dependent, and these vectors are inadequate to transduce nondividing and/or terminally differentiated cells stably, which severely restricts their potential utility for clinical gene transfer (46). In contrast, vectors based on the human immunodeficiency virus (HIV) can deliver genes into nondividing cells as efficiently as into proliferating cells (7,8). HIV vectors, then, serve as vehicles to deliver a gene of interest into clinically important terminally differentiated, quiescent, and nondividing cells. The use of vectors derived from a pathogenic virus for human gene therapy, however, remains a major safety concern and health risk issue. Recently, it was shown that animal lentivirus vectors pseudotyped with vesicular stomatitis virus envelope glycoprotein G (VSV-G) can transduce human cells, overcoming the restricted host tropism (9). These vectors deliver genes into nondividing cells as efficiently as HIV. However, the comparative safety and efficacy of vectors based on nonprimate lentiviruses in humans remain to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coffin J M., Hughes S. H., and Varmus H E. (1997) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  2. Miller A. D., Miller D. G., Garcia J. V., and Lynch C. M. (1993) Use of retroviral vectors for gene transfer and expression. Methods Enzymol. 217, 581–599.

    CAS  Google Scholar 

  3. Vile R. G. and Rusell S. J. (1995) Retroviruses as vectors. Br. Med. Bull. 51,12–30.

    PubMed  CAS  Google Scholar 

  4. Miller D. G., Adam M. A., and Miller A. D. (1990) Gene transfer by retroviral vectors occurs only in cells that are actively replicating at the time of infection. Mol. CellBiol. 10,4239–4242.

    CAS  Google Scholar 

  5. Roe T., Reynolds T. C., Yu G., and Brown P. O. (1993) Integration of murine leukemia virus DNA depends on mitosis. EMBOJ. 12, 2099–2108.

    CAS  Google Scholar 

  6. Springett G. M., Moen R. C., Anderson S., Blaese R. M., and Anderson W. F. (1989) Infection efficiency of T lymphocytes with amphotropic retroviral vectors is cell cycle dependent. J. Virol. 63, 3865–3869.

    PubMed  CAS  Google Scholar 

  7. Lewis P., Hensel M., and Emerman M. (1992) Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J. 11, 3053–3058.

    PubMed  CAS  Google Scholar 

  8. Lewis P. F. and Emerman M. (1994) Passage through mitosis is required for oncoretroviruses bu-not for the human immunodeficiency virus. J. Virol. 68,510–516.

    PubMed  CAS  Google Scholar 

  9. Poeschla E. M., Wong-Staal F., and Looney D. J. (1998) Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat. Med. 4, 354–357.

    Article  PubMed  CAS  Google Scholar 

  10. Mergia A, Leung N. J., and Blackwell J. (1996) Cell tropism of of the simian foamy virus type 1 (SFV-1). J. Med. Primatol. 25, 2–7.

    Article  PubMed  CAS  Google Scholar 

  11. Hooks J. J. and Detrick-Hooks B. (1981) Spumavirinae: foamy virus group infections. Comparative aspects and diagnosis, in Comparative Diagnosis of Viral Disease, vol. 4 (Kurstak E. and Kurstak C., eds.), Academic, New York, pp 599–618.

    Google Scholar 

  12. Weiss R. A. (1988) Foamy retroviruses. A virus in search of a disease. Nature(Lond.) 333, 497–498.

    Article  CAS  Google Scholar 

  13. Flugel R. M. (1991) Spumaviruses: a group of complex retroviruses. J. AIDS 4, 739–750.

    CAS  Google Scholar 

  14. Mergia A. and Luciw P. A. (1991) Replication and regulation of primate foamy viruses. Virology 184, 475–482.

    Article  PubMed  CAS  Google Scholar 

  15. Linial M. (2000) Why aren’t foamy viruses pathogenic? Trends Microbiol. 8,284–289.

    Article  PubMed  CAS  Google Scholar 

  16. Heneine W., Switzer W. M., Sandstrom P., et al. (1998) Identification of a human population infected with simian foamy viruses. Nat. Med. 4,403–407.

    Article  PubMed  CAS  Google Scholar 

  17. Schweizer M., Falcone V., Gange J., Turek R, and Neumann-Haefelin D. (1997) Simian foamy virus isolated from an accidentally infected human individual. J.Virol. 71,4821–4824.

    PubMed  CAS  Google Scholar 

  18. Mergia A., Soumya. C. L., Kolson D., Goodenow M. M., and Ciccarone T. The efficiency of simian foamy virus vector type-1 (SFV-1) in non-dividing cells and in human PBLs. Virology 28, 243–252.

    Google Scholar 

  19. Kupiec J., Kay A., Hayat M., et al. (1991) Sequence analysis of the simian foamy virus type 1 genome. Gene 101, 185–194.

    Article  PubMed  CAS  Google Scholar 

  20. Flugel R. M., Rethwilm A., Maurer B., and Darai G. (1987) Nucleotide sequence analysis of the env gene and its flanking regions of the human spumaretrovirus reveals two novel genes. EMBOJ. 6, 2077–2084.

    CAS  Google Scholar 

  21. Maurer B., Bannert H., Darai G., and Flugel R. M. (1988) Analysis of the primary structure of the long terminal repeat and the gag andpol genes of the human spumaretrovirus. J. Virol. 62, 1590–1597.

    PubMed  CAS  Google Scholar 

  22. Renne R., Mergia A., Renshaw-Gegg L. W., Neuman-Haefelin D., and Luciw P. A. (1993) Regulatory elements in the long terminal repeat (LTR) of simian foamy virus type 3. Virology 192, 365–369.

    Article  PubMed  CAS  Google Scholar 

  23. Herchenroder O., Renne R., Loncar D., et al. (1994) Isolation, cloning, and sequencing of simian foamy viruses from chimpanzees (SFVcpz): high homology to human foamy virus (HFV). Virology 201, 187–199.

    Article  PubMed  CAS  Google Scholar 

  24. Renshaw R. W. and Casey J. W. (1994) Transcriptional mapping of the 3′ end of the bovine syncytial virus genome. J. Virol. 68, 1021–1028.

    PubMed  CAS  Google Scholar 

  25. Winkler I., Bodem J., Haas L., et al. (1997) Characterization of the genome of feline foamy virus and its proteins shows distinct features different from those of primate spumaviruses. J. Virol. 71, 6727–6741.

    PubMed  CAS  Google Scholar 

  26. Tobaly-Tapiero J., Bittoun P., Neves M., et al. (2000) Isolation and characterization of an equine foamy virus. J. Virol. 74,4064–4073.

    Article  PubMed  CAS  Google Scholar 

  27. Mergia A., Shaw K. E. S., Pratt-Lowe E., Barry P. A., and Luciw P. A. (1991) Identification of the simian foamy virus transcriptional transactivator gene (taf). J. Virol. 65, 2903–2909.

    PubMed  CAS  Google Scholar 

  28. Rethwilm A., Otto E., Baunach G., Maurer B., and Meulen V. (1991) The transcriptional transactivator of human foamy virus maps to the bel 1 genomic region. Proc. Natl. Acad. Sci. USA 88, 941–945.

    Article  PubMed  CAS  Google Scholar 

  29. Venkatesh L. K., Theodorakis P. A., and Chinnadurai G. (1991) Distinct cisacting regions in the U3 regulate trans-activation of the human spumaretrovirus long terminal repeat by the viral bel1 gene product. Nucleic Acids Res. 19,3661–3666.

    Article  PubMed  CAS  Google Scholar 

  30. Keller A., Partin K. M., Lochelt M., Bannert H., et al. (1991) Characterization of the transcriptional trans-activator of human foamy virus. J. Virol. 65,2589–2594.

    PubMed  CAS  Google Scholar 

  31. Herchenroder O., Turek R., Neumann-Haefelin D., Rethwilm A., and Schneider J. (1995) Infectious proviral clones of chimpanzee foamy virus (SFVcpz) generated by long PCR reveal close functional relatedness to human foamy virus. Virology 214, 685–689.

    Article  PubMed  CAS  Google Scholar 

  32. Renshaw R. W., and Casey J. W. (1994) Analysis of the 5′ long terminal repeat of bovine syncytial virus. Gene 141, 221–224.

    Article  PubMed  CAS  Google Scholar 

  33. Lochelt M., Zentgraf H., and Flugel R. M. (1991) Construction of an infectious DNA clone of the full-length human spumaretrovirus genome and mutagenesis of the bel 1 gene. Virology 184,43–54.

    Article  PubMed  CAS  Google Scholar 

  34. Baunach G., Maurer B., Hahn H., Kranz M., and Rethwilm A. (1993) Functional analysis of human foamy virus accessory reading frames. J. Virol. 67,5411–5418.

    PubMed  CAS  Google Scholar 

  35. Giron M. L., Rozain F., Debons-Guillemin M. C., et al. (1993) Human foamy virus polypeptides: identification of env and bel gene products. J. Virol. 67: 3596–3600.

    PubMed  CAS  Google Scholar 

  36. He F., Sun J. D., Garrett E. D., and Cullen B. R. (1993) Functional organization of the Bel-1 transactivator of human foamy virus. J. Virol. 67, 1896–1904.

    PubMed  CAS  Google Scholar 

  37. Yu S. F. and Linial M. L. (1993) Analysis of the role of the bel and bet open reading frames of human foamy virus by using a new quantitative assay. J. Virol. 67,6618–6624.

    PubMed  CAS  Google Scholar 

  38. Muranyi W, Flugel RM. (1991) Analysis of splicing patterns of human spumaretrovirus by polymerase chain reaction reveals complex RNA structures. J. Virol. 65, 727–735.

    PubMed  CAS  Google Scholar 

  39. Mergia A. (1994) Simian foamy virus type 1 contains a second promoter located at the 3′ end of the env gene. Virology 199, 219–222.

    Article  PubMed  CAS  Google Scholar 

  40. Hahn H., Gerald B., Brautigam S., et al. (1994) Reactivity of primate sera to foamy virus Gag and Bet proteins. J. Gen. Virol. 75, 2635–2644.

    Article  PubMed  CAS  Google Scholar 

  41. Saib A., Koken M. H., Spek P. V. D., Peries J.,and The H. D. (1995) Involvement of a spliced and defective human foamy virus in the establishment of chronic infection. J. Virol. 69: 5261–5268.

    PubMed  CAS  Google Scholar 

  42. Bock M., Heinkelein M., Lindemann D., and Rethwilm A. (1998) Cells expressing the human foamy virus (HFV) accessory Bet protein are resistant to productive HFV superinfection. Virology 250, 194–204.

    Article  PubMed  CAS  Google Scholar 

  43. Callahan M. E., Switzer W. M., Matthews A. L., et al. (1999) Persistent zoonotic infection of a human with simian foamy virus in the absence of an intact orf-2 accessory gene. J. Virol. 73, 9619–9624.

    PubMed  CAS  Google Scholar 

  44. Lochelt M., Muranyi W., and Flugel R. M. (1993) Human foamy virus genome possesses an internal, Bel-1-dependent and functional promoter. Proc. Natl. Acad. Sci. USA 90, 7317–7321.

    Article  PubMed  CAS  Google Scholar 

  45. Lochelt M., Flugel R. M., and Aboud M. (1994) The human foamy virus internal promoter directs the expression of the functional Bel 1 and Bet proteins early after infection. J. Virol. 68, 638–645.

    PubMed  CAS  Google Scholar 

  46. Campbell M., Renshaw-Gegg L., Renne R., and Luciw P. A. (1994) Characterization of the internal promoter of simian foamy viruses. J. Virol. 68,4811–4820.

    PubMed  CAS  Google Scholar 

  47. Bodem J., Lochelt M., Winkler I., et al. (1996) Characterization of the spliced pol transcript of feline foamy virus: the splice acceptor site of the pol transcript is located in gag of foamy viruses. J. Virol. 70, 9024–9027.

    PubMed  CAS  Google Scholar 

  48. Yu S. F., Baldwin D. N., Gwynn S. R., Yendapalli S., and Linial M. L. (1996) Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science 271, 1579–1582.

    Article  PubMed  CAS  Google Scholar 

  49. Enssle J., Jordan I., Mauer B., and Rethwilm A. (1996) Foamy virus reverse transcriptase is expressed independently from the Gag protein. Proc. Natl. Acad. Sci. USA 93,4137–4141.

    Article  PubMed  CAS  Google Scholar 

  50. Lochelt M. and Flugel R. M. (1996) The human foamy virus pol gene is expressed as a Pro-Pol polyprotein and not as a Gag-Pol fusion protein. J. Virol. 70,1033–1040.

    PubMed  CAS  Google Scholar 

  51. Enssle J., Fischer N., Moebes A., et al. (1997) Carboxy-terminal cleavage of the human foamy virus gag precursor molecule is an essential step in the viral life cycle. J. Virol. 71, 7312–7317.

    PubMed  CAS  Google Scholar 

  52. Yu S. F., Sullivan M. D., and Linial M. L. (1999) Evidence that the human foamy virus genome is DNA. J. Virol. 73, 1565–1572.

    PubMed  CAS  Google Scholar 

  53. Mergia A. and Wu M. (1998) Characterization of provirus clones of simian foamy virus type 1 (SFV-1). J. Virol. 72, 817–822.

    PubMed  CAS  Google Scholar 

  54. Schmidt M. and Rethwilm A. (1995) Replicating foamy virus-based vectors directing high level expression of foreign genes. Virology 210, 167–178.

    Article  PubMed  CAS  Google Scholar 

  55. Russell D. W. and Miller A. D. (1996) Foamy virus vectors. J. Virol. 70,217–222.

    PubMed  CAS  Google Scholar 

  56. Hirata R. K., Miller A. D., Andrews R. G., and Russell D. W. (1996) Transduction of hematopoietic cells by foamy virus vectors. Blood 88, 3654–3661.

    PubMed  CAS  Google Scholar 

  57. Bieniasz P. D., Erlwein O., Aguzzi. A., Rethwilm A., and McClure M. O. (1997) Gene transfer using replication-defective human foamy virus vectors. Virology 235, 65–72.

    Article  PubMed  CAS  Google Scholar 

  58. Wu M,, Chari S., Yanchis T., and Mergia A. (1998) Cis-acting sequences required for simian foamy virus type 1 (SFV-1) vectors. J. Virol. 72, 3451–3454.

    PubMed  CAS  Google Scholar 

  59. Erlwein O., Bieniasz P. D., and McClure M. O. (1998) Sequences in pol are required for transfer of human foamy virus-based vectors. J. Virol. 72, 5510–5516.

    PubMed  CAS  Google Scholar 

  60. Heinkelein M., Schmidt M., Fischer N., et al. (1998) Characterization of a cis-acting sequence in the Pol region required to transfer human foamy virus vectors. J. Virol. 72, 6307–6314.

    PubMed  CAS  Google Scholar 

  61. Fischer N., Heinkelein M., Lindemann D., et al. (1998) Foamy virus particle formation. J. Virol. 72, 1610–1615.

    PubMed  CAS  Google Scholar 

  62. Trobridge G. D. and Russel D. W. (1998) Helper-free foamy virus vectors. Hum.Gene Ther. 9, 2517–2525.

    Article  PubMed  CAS  Google Scholar 

  63. Wu M. and Mergia A. (1999) Packaging cell lines for simian foam virus type 1 (SFV-1) vectors. J. Virol. 73, 4498–4501.

    PubMed  CAS  Google Scholar 

  64. Schenk T., Enssle J., Fischer N., and Rethwilm A. (1999) Replication of a foamy virus mutant with a constitutively active U3 promoter and deleted accessory genes. J. Gen. Virol. 80, 1591–1598.

    PubMed  CAS  Google Scholar 

  65. Kim V. N., Mitrophanous K., Kingsman S. M, and Kingsman A. J. (1998) Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1.J. Virol. 72, 811–816.

    PubMed  CAS  Google Scholar 

  66. Naviaux R. K., Costanzi E., Haas M., and Verma I. M. (1996) The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J.Virol. 70, 5701–5705.

    PubMed  CAS  Google Scholar 

  67. Soneoka Y., Cannon P. M., Ramsdale E. E., et al. (1995) A transient three-plasmid expression system for the production of high titer retroviral vectors.Nucleic Acids Res. 23, 628–633.

    Article  PubMed  CAS  Google Scholar 

  68. Bahner I., Kearns K., Hao Q. L., Smogorzewska E. M., and Kohn D. B. (1996) Transduction of human CD34+ hematopoietic progenitor cells by a retroviral vector expressing an RRE decoy inhibits human immunodeficiency virus type 1 replication in myelomonocytic cells produced in long-term culture. J. Virol. 70,4352–4360.

    PubMed  CAS  Google Scholar 

  69. Bunnell B. A., Muul L. M., Donahue R. E., Blaese R. M., and Morgan R. A. (1995) High-efficiency retroviral-mediated gene transfer into human and nonhu-man primate peripheral blood lymphocytes. Proc. Natl. Acad. Sci. USA 92,7739–7743.

    Article  PubMed  CAS  Google Scholar 

  70. Tanaka J., Sadanari H., Sato H., and Fukuda S. (1991) Sodium butyrate-induc-ible replication of human cytomegalovirus in a human epithelial cell line. Virology 185, 271–280.

    Article  PubMed  CAS  Google Scholar 

  71. Olsen J. C. and Sechelski J. (1995) Use of sodium butyrate to enhance production of retroviral vectors expressing CFTR cDNA. Hum. Gene Ther. 6, 1195–1202.

    Article  PubMed  CAS  Google Scholar 

  72. Sakoda T., Kasahara N., Hamamori Y., and Kedes L. (1999) A high-titer lentiviral production system mediates efficient transduction of differentiated cells including beating cardiac myocytes. J. Mol. Cell Cardiol. 31, 2037–2047.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Park, J., Mergia, A. (2002). Simian Foamy Virus Vectors. In: Morgan, J.R. (eds) Gene Therapy Protocols. Methods in Molecular Medicine, vol 69. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-141-8:319

Download citation

  • DOI: https://doi.org/10.1385/1-59259-141-8:319

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-723-6

  • Online ISBN: 978-1-59259-141-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics