Skip to main content

Preparation of Pseudotyped Retroviral Vector

  • Protocol
Gene Therapy Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 69))

Abstract

Retroviral vectors derived from murine leukemia retrovirus (MuLV) have been widely used for efficient gene transfer to achieve long-term expression of a chosen therapeutic gene in mammLian cells (1). Disadvantages of this vector are the instability and low viral titers generated from packaging cells, low efficiency of gene transfer into human cells, especially in vivo, and the requirement for dividing cells. Some authors have attempted to increase the transduction efficiency by using strategies like low-speed centrifugation of viral supernatant with cells, multiple viral exposures (2), or increasing viral titers by ultracentrifugation (3); they were able to produce an average transduction efficiency of 10–60%. However, all such improvements in transduction efficiency require additional procedures, which are practically inefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller A. D., Miller D. G., Garcia J. V., and Lynch C. M. (1993) Use of retroviral vectors for gene transfer and expression. Methods Enzymol. 217, 581–599.

    Article  PubMed  CAS  Google Scholar 

  2. Inaba M., Toninelli E., Vanmeter G., Bender J. R., and Conte M. S. (1998) Retroviral gene transfer: effects on endothelial cell phenotype. J. Surg. Res. 78, 31–36.

    Article  PubMed  CAS  Google Scholar 

  3. Zelenock J. A., Welling T. H., Sarkar R., Gordon D. G., and Messina L. M. (1997) Improved retroviral transduction efficiency of vascular cells in vitro and in vivo during clinically relevant incubation periods using centrifugation to increase viral titers. J Vasc. Surg. 26, 119–127.

    Article  PubMed  CAS  Google Scholar 

  4. Friedmann T. and Yee J. K. (1995) Pseudotyped retroviral vectors for studies of human gene therapy. NatMed. 1, 275–277.

    CAS  Google Scholar 

  5. Schnell M. J., Buonocore L., Kretzschmar E., Johnson E., and Rose J. K. (1996) Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc. Natl. Acad. Sci. USA 93, 11359–11365.

    Article  PubMed  CAS  Google Scholar 

  6. Burns J. C., Friedmann T., Driever W., Burrascano M., and Yee J. K. (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells [see comments]. Proc. Natl. Acad. Sci. USA 90, 8033–8037.

    Article  PubMed  CAS  Google Scholar 

  7. Gallardo H. F., Tan C., Ory D., and Sadelain M. (1997) Recombinant retroviruses pseudotyped with the vesicular stomatitis virus G glycoprotein mediate both stable gene transfer and pseudotransduction in human peripheral blood lymphocytes. Blood 90, 952–957.

    PubMed  CAS  Google Scholar 

  8. An D. S., Koyanagi Y., Zhao J. Q., et al. (1997) High-efficiency transduction of human lymphoid progenitor cells and expression in differentiated T cells. J. Virol. 71, 1397–1404.

    PubMed  CAS  Google Scholar 

  9. Sharma S., Cantwell M., Kipps T. J., and Friedmann T. (1996) Efficient infection of a human T-cell line and of human primary peripheral blood leukocytes with a pseudotyped retrovirus vector. Proc. Natl. Acad. Sci. USA 93, 11842–11847.

    Article  PubMed  CAS  Google Scholar 

  10. Liu M. L., Winther B. L., and Kay M. A. (1996) Pseudotransduction of hepatocytes by using concentrated pseudotyped vesicular stomatitis virus G glycoprotein (VSV-G)-Moloney murine leukemia virus-derived retrovirus vectors: comparison of VSV-G and amphotropic vectors for hepatic gene transfer. J. Virol. 70, 2497–2502.

    PubMed  CAS  Google Scholar 

  11. Yu H., Eton D., Wang Y., et al. (1999) High efficiency in vitro gene transfer into vascular tissues using a pseudotyped retroviral vector without pseudotransduction. Gene Ther. 6, 1876–1883.

    Article  PubMed  CAS  Google Scholar 

  12. Emi N., Friedmann T., and Yee J. K. (1991) Pseudotype formation of murine leukemia virus with the G protein of vesicular stomatitis virus. J. Virol. 65, 1202–1207.

    PubMed  CAS  Google Scholar 

  13. Schlegel R., Tralka T. S., Willingham M. C., and Pastan I. (1983) Inhibition of VSV binding and infectivity by phosphatidylserine: is phosphatidylserine a VSVbinding site? Cell 32, 639–646.

    Article  PubMed  CAS  Google Scholar 

  14. Mastromarino P., Conti C., Goldoni P., Hauttecoeur B., and Orsi N. (1987) Characterization of membrane components of the erythrocyte involved in vesicular stomatitis virus attachment and fusion at acidic pH. J. Gen. Virol. 68, 2359–2369.

    Article  PubMed  CAS  Google Scholar 

  15. Conti C., Mastromarino P., Ciuffarella M. G., and Orsi N. (1988) Characterization of rat brain cellular membrane components acting as receptors for vesicular stomatitis virus. Brief report. Arch. Virol. 99, 261–269.

    Article  CAS  Google Scholar 

  16. Chen S. T., Iida A., Guo L., Friedmann T., and Yee J. K. (1996) Generation of packaging cell lines for pseudotyped retroviral vectors of the G protein of vesicular stomatitis virus by using a modified tetracycline inducible system. Proc. Natl. Acad. Sci.USA 93, 10057–10062.

    Article  PubMed  CAS  Google Scholar 

  17. Ory D. S., Neugeboren B. A., and Mulligan R. C. (1996) A stable human-de-rived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl. Acad. Sci. USA 93, 11400–11406.

    Article  PubMed  CAS  Google Scholar 

  18. Arai T., Matsumoto K., Saitoh K., et al. (1998) A new system for stringent, high-titer vesicular stomatitis virus G protein-pseudotyped retrovirus vector induction by introduction of Cre recombinase into stable prepackaging cell lines. J. Virol. 72, 1115–1121.

    PubMed  CAS  Google Scholar 

  19. Miller D. G., Adam M. A., and Miller A. D. (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection [published erratum appears in Mol Cell Biol (1992) 12,433. Mol. Cell. Biol. 10, 4239–4242.

    PubMed  CAS  Google Scholar 

  20. Pear W. S., Nolan G. P., Scott M. L., and Baltimore D. (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci.USA 90, 8392–8396.

    Article  PubMed  CAS  Google Scholar 

  21. Han J. Y., Cannon P. M., Lai K. M., Zhao Y., Eiden M. V., and Anderson W. F. (1997) Identification of envelope protein residues required for the expended host range of 10A1 murine leukemia birus. J. Virol. 71, 8103–8108.

    PubMed  CAS  Google Scholar 

  22. Soneoka Y., Cannon P. M., Ramsdale E. E., et al. (1995) A transient threeplasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res. 23, 628–633.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Yu, H. (2002). Preparation of Pseudotyped Retroviral Vector. In: Morgan, J.R. (eds) Gene Therapy Protocols. Methods in Molecular Medicine, vol 69. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-141-8:149

Download citation

  • DOI: https://doi.org/10.1385/1-59259-141-8:149

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-723-6

  • Online ISBN: 978-1-59259-141-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics