Skip to main content

Direct Gene Transfer and Vaccination Via Skin Transfection Using a Gene Gun

  • Protocol
Gene Therapy Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 69))

  • 752 Accesses

Abstract

Gene gun technology provides a useful means for direct transfer of DNA or RNA constructs that can result in transgenic protein expression from gene expression vectors (18). The system has been applied to a broad spectrum of experimental studies on transgenic research, gene therapy approaches, and genetic vaccinations (see Note 1). The technology was first reported by Yang et al. in 1990 (1) for in vivo and in vitro gene transfer into mammalian somatic tissues and was later extended to various ex vivo gene transfer systems, including excised tissue explants or clumps, organic tissues placed in culture vessels, and their derived primary cultures (9; see Note 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang N.-S, Burkholder J., Roberts B., Martinell B., and McCabe D. (1990) In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc. Natl. Acad. Sci. USA 87, 9568–9572.

    Article  PubMed  CAS  Google Scholar 

  2. Cheng L., Ziegelhoffer P., and Yang N.-S. (1993) In vivo promoter activity and transgenic expression in mammalian somatic tissues evaluated by using particle bombardment. Proc. Natl. Acad. Sci. USA 90,4454–4459.

    Article  Google Scholar 

  3. Jiao S., Cheng L., Wolff J., and Yang N.-S. (1993) Particle bombardment-mediated gene transfer and expression in rat brain tissues. Bio/Technology 11,497–502.

    Article  PubMed  CAS  Google Scholar 

  4. Burkholder J. K., Decker J., and Yang N.-S. (1993) Transgene expression in lymphocyte and macrophage primary cultures after particle bombardment. J.Immunol. Methods 165, 149–156.

    Article  PubMed  CAS  Google Scholar 

  5. Thompson T. A., Gould M. N., Burkholder J. K., and Yang N.-S. (1993) Transient promoter activity in primary rat mammary epithelial cells evaluated using particle bombardment gene transfer. In Vitro Cell Dev. Biol. 29A, 165–170.

    Article  PubMed  CAS  Google Scholar 

  6. Christou P. (1994) Application to plants, in Particle Bombardment Technology for Gene Transfer (Yang N.-S. and Christou P., eds.), Oxford University Press, New York, pp. 71–99.

    Google Scholar 

  7. Yang N.-S. and Ziegelhoffer P. (1994) The particle bombardment system for mammalian gene transfer, in Particle Bombardment Technology for Gene Transfer (Yang N.-S. and Christou P., eds.), Oxford University Press, New York, pp.117–141.

    Google Scholar 

  8. Qiu P., Ziegelhoffer P., Sun J., and Yang N.-S. (1996) Gene gun delivery of mRNA in situ result in efficient transgene expression and immunization. Gene Ther. 3, 262–268.

    PubMed  CAS  Google Scholar 

  9. Guo Z., Yang N.-S., Jiao S., et al. (1996) Efficient and sustained transgene expression in mature rat oligodendrocytes in primary culture. J. Neurol. Res. 43,32–41.

    Article  CAS  Google Scholar 

  10. Irvine K. R., Rao J. B., Rosenberg S. A., and Restifo N. P. (1996) Cytokine enhancement of DNA immunization leads to effective treatment of established pulmonary metastases. J. Immunol. 156, 238–245.

    PubMed  CAS  Google Scholar 

  11. Ross H. M., Weber L. W., Wang S., et al. (1997) Priming for T-cell-mediated rejection of established tumors by cutaneous DNA immunization. Clin. Cancer Res. 3, 2191–2196.

    PubMed  CAS  Google Scholar 

  12. Feltquate D. M., Heaney S., Webster R. D., and Robinson H. L. (1997) Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J. Immunol. 158, 2278–2284.

    PubMed  CAS  Google Scholar 

  13. Condon C., Watkins S. C., Celluzzi C. M., et al. (1996) DNA-based immunization by in vivo transfection of dendritic cells. Nature Med. 2, 1122–1128.

    Article  PubMed  CAS  Google Scholar 

  14. Iwasaki A., Torres C. A. T., Ohashi P. S., Robinson H. L., and Barber B. H. (1997) The dominant role of bone marrow-derived cells in CTL induction following plasmid DNA immunization at different sites. J. Immunol. 159, 11–14.

    PubMed  CAS  Google Scholar 

  15. Mahvi D. M., Sheehy M. J., and Yang N.-S. (1997) DNA cancer vaccines: a gene gun approach. Immunol. Cell Biol. 75, 456–460.

    Article  PubMed  CAS  Google Scholar 

  16. Conry R. M., Widera G., LoBuglio A. F., et al. (1996) Selected strategies to augment polynucleotide immunization. Gene Ther. 3, 67–74.

    PubMed  CAS  Google Scholar 

  17. Mahvi D. M., Burkholder J. K., Turner J., et al. (1996) Particle-mediated gene transfer of granulocyte-macrophage colony-stimulating factor cDNA to tumor cells: implications for a clinically relevant tumor vaccine. Hum. Gene Ther. 7,1535–1543.

    Article  PubMed  CAS  Google Scholar 

  18. Tan J., Yang N.-S., Turner J. G., et al. (1999) Interleukin-12 cDNA skin transfection potentiates human papillomavirus E6 DNA vaccine-induced antitumor immune response. Cancer Gene Ther. 6, 331–339.

    Article  PubMed  CAS  Google Scholar 

  19. Hogge G. S., Burkholder J. C., Albertini M. R., et al. (1998) Development of human granulocyte-macrophage colony-stimulating factor-transfected tumor cell vaccines for the treatment of spontaneous canine cancer. Hum. Gene Ther. 9,1851–1861.

    Article  PubMed  CAS  Google Scholar 

  20. Beardsley T. (1999) Innovative immunity. Sci. Am. 280, 42–44.

    Article  PubMed  CAS  Google Scholar 

  21. Weber S. M., Shi F., Heise C., Warner T., and Mahvi D. M. (1999) IL-12 gene transfer results in CD 8-dependent regression of murine CT26 liver tumors. Ann. ofSurg. Oncol. 6, 186–194.

    Article  CAS  Google Scholar 

  22. Rakhmilevich A. L., Janssen K., Turner J., Culp J., and Yang N.-S. (1997) Cytokine gene therapy of cancer using gene gun technology: superior antitumor activity of IL-12. Hum. Gene Ther. 8, 1303–1311.

    Article  PubMed  CAS  Google Scholar 

  23. Rakhmilevich A. L., Turner J., Ford M. J., et al. (1996) Gene gun-mediated skin transfection with interleukin 12 gene results in regression of established primary and metastatic murine tumors. Proc. Natl. Acad. Sci. USA 93,6291–6296.

    Article  PubMed  CAS  Google Scholar 

  24. Sun W. H., Burkholder J. K., Sun J., Culp J., Turner J., and Lu X. G. (1995) In vivo cytokine gene transfer by gene gun suppresses tumor growth in mice. Proc. Natl. Acad. Sci. USA 92, 2889–2893.

    Article  PubMed  CAS  Google Scholar 

  25. Andree C., Swan W. F., Page C. P., Macklin M. D., Slama J., Hatzis D., and Eriksson E. (1994) In vivo transfer and expression of an EGF gene accelerates wound repair. Proc. Natl. Acad. Sci. USA 91, 12188–12192.

    Article  PubMed  CAS  Google Scholar 

  26. Ye Z.-Q., Qiu P., Burkholder J. K., et al. (1998) Cytokine transgene expression and promoter usage in primary CD34+ cells using particle-mediated gene delivery. Hum. Gene Ther. 9, 2197–2205.

    Article  PubMed  CAS  Google Scholar 

  27. Fuller D. H., Corb M. M., Barnett S., Steimer K., and Haynes J. R. (1997) Enhancement of immunodeficiency virus-specific immune responses in DNA-immunized rhesus macaques. Vaccine 15, 924–926.

    Article  PubMed  CAS  Google Scholar 

  28. Fuller D. H., et al. (2000) Oral presentation. ASGT Meeting, Denver, CO.

    Google Scholar 

  29. Swain W. F., et al. (2000) Oral presentation. 2000 International Symposium on DNA Vaccine and Gene Therapy Technology, Taipei, Taiwan.

    Google Scholar 

  30. Sun W. H., Burkholder J. K., Sun J., et al. (1995) In vivo cytokine gene transfer by gene gun reduces tumor growth in mice. Proc. Natl. Acad. Sci. USA 92,2889–2893.

    Article  PubMed  CAS  Google Scholar 

  31. Felgner P. L., et al. (2000) Oral presentation. 2000 International Symposium on DNA Vaccine and Gene Therapy Technology, Taipei, Taiwan.

    Google Scholar 

  32. Woffendin C., Yang Z.-Y., Udaykumar et al. (1994) No viral and viral delivery of a human immunodeficiency virus protective gene into primary human T cells.Proc. Natl. Acad. Sci. USA 91, 11581–11585.

    Article  PubMed  CAS  Google Scholar 

  33. Hogge G. S., Burkholder J. K., Culp J., et al. (1999) Preclinical development of human granulocyte-macrophage colony-stimulating factor-transfected melanoma cell vaccine using established canine cell lines and normal dogs. Cancer Gene Ther. 6, 26–36.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Kuo, CF., Wang, J.H., Yang, NS. (2002). Direct Gene Transfer and Vaccination Via Skin Transfection Using a Gene Gun. In: Morgan, J.R. (eds) Gene Therapy Protocols. Methods in Molecular Medicine, vol 69. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-141-8:137

Download citation

  • DOI: https://doi.org/10.1385/1-59259-141-8:137

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-723-6

  • Online ISBN: 978-1-59259-141-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics