Skip to main content

Cotransfection Assays and Steroid Receptor Biology

  • Protocol
Steroid Receptor Methods

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 176))

Abstract

The glucocorticoid, mineralocorticoid, progesterone, androgen, estrogen α and estrogen β receptors (GR, MR, PR, AR, ERα, and ERβ, respectively) form the steroid receptor family, part of the nuclear receptor superfamily (1). Like other nuclear receptors, steroid receptors have a conserved domain structure that consists of a C-terminal hormone-binding domain, a central DNA-binding domain, and an N-terminal transcriptional modulatory domain (2). However, unlike other nuclear receptors, in the absence of hormone they are associated with chaperone proteins such as HSP90 (3). Upon binding of steroid, these receptors undergo a conformational change that brings about dissociation of the receptor-chaperone complex, which in turn allows the receptor to bind to DNA, interact with transcriptional coactivators, and activate transcription (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., et al. (1995) The nuclear receptor superfamily: the second decade. Cell 83, 835–839.

    Article  PubMed  CAS  Google Scholar 

  2. Kumar, R. and Thompson, E. B. (1999) The structure of the nuclear hormone receptors. Steroids 64, 310–319.

    Article  PubMed  CAS  Google Scholar 

  3. Cheung, J. and Smith, D. F. (2000) Molecular chaperone interactions with steroid receptors: an update. Mol. Endocrinol. 14, 939–946.

    Article  PubMed  CAS  Google Scholar 

  4. Di Croce, L., Okret, S., Kersten, S., Gustafsson, J. A., Parker, M., Wahli, W., and Beato, M. (1999) Steroid and nuclear receptors. EMBO J. 18, 6201–6210.

    Article  PubMed  Google Scholar 

  5. Housley, P. R. and Forsthoefel, A. M. (1989) Isolation and characterization of a mouse L cell variant deficient in glucocorticoid receptors. Biochem. Biophys. Res. Commun. 164, 480–487.

    Article  PubMed  CAS  Google Scholar 

  6. List, H. J., Lozano, C., Lu, J., Danielsen, M., Wellstein, A., and Riegel, A. T. (1999) Comparison of chromatin remodeling and transcriptional activation of the mouse mammary tumor virus promoter by the androgen and glucocorticoid receptor. Exp. Cell Res. 250, 414–422.

    Article  PubMed  CAS  Google Scholar 

  7. Lin, E. C. C. and Knox, W. E. (1957) Adaptation of the rat liver tyrosine-alphaketoglutarate transaminase. Biochimica et Biophysica Acta 26, 85–88.

    Article  PubMed  CAS  Google Scholar 

  8. Hashimoto, S., Schmid, W., and Schutz, G. (1984) Transcriptional activation of the rat liver tyrosine aminotransferase gene by cAMP. Proc. Natl. Acad. Sci. USA 81, 6637–6641.

    Article  PubMed  CAS  Google Scholar 

  9. Oshima, H. and Simons, S. S., Jr. (1992) Modulation of glucocorticoid induction of tyrosine aminotransferase gene expression by variations in cell density. Endocrinology 130, 2106–2112.

    Article  PubMed  CAS  Google Scholar 

  10. Martin, M. B., Garcia-Morales, P., Stoica, A., Solomon, H. B., Pierce, M., Katz, D., et al. (1995) Effects of 12-O-tetradecanoylphorbol-13-acetate on estrogen receptor activity in MCF-7 cells. J. Biol. Chem. 270, 25,244–25,251.

    Article  PubMed  CAS  Google Scholar 

  11. Sortino, M. A., Condorelli, F., Vancheri, C., Chiarenza, A., Bernardini, R., Consoli, U., and Canonico, P. L. (2000) Mitogenic effect of nerve growth factor (NGF) in LNCaP prostate adenocarcinoma cells: role of the high-and low-affinity NGF receptors. Mol. Endocrinol. 14, 124–136.

    Article  PubMed  CAS  Google Scholar 

  12. Naylor, L. H. (1999) Reporter gene technology: the future looks bright. Biochem. Pharmacol. 58, 749–757.

    Article  PubMed  CAS  Google Scholar 

  13. Gelmini, S., Pinzani, P., and Pazzagli, M. (2000) Luciferase gene as reporter: comparison with the CAT gene and use in transfection and microinjection of mammalian cells. Methods Enzymol. 305, 557–576.

    Article  PubMed  CAS  Google Scholar 

  14. Alam, J. and Cook, J. L. (1990) Reporter genes: application to the study of mammalian gene transcription. Anal. Biochem. 188, 245–254.

    Article  PubMed  CAS  Google Scholar 

  15. Lee, F., Mulligan, R., Berg, P., and Ringold, G. (1981) Glucocorticoids regulate expression of dihydrofolate reductase cDNA in mouse mammary tumour virus chimaeric plasmids. Nature 294, 228–232.

    Article  PubMed  CAS  Google Scholar 

  16. Danielsen, M., Hinck, L., and Ringold, G. M. (1989) Two amino acids within the knuckle of the first zinc finger specify DNA response element activation by the glucocorticoid receptor. Cell 57, 1131–1138.

    Article  PubMed  CAS  Google Scholar 

  17. Kasper, S., Rennie, P. S., Bruchovsky, N., Lin, L., Cheng, H., Snoek, R., et al. (1999) Selective activation of the probasin androgen-responsive region by steroid hormones. J. Mol. Endocrinol. 22, 313–325.

    Article  PubMed  CAS  Google Scholar 

  18. Adler, A. J., Danielsen, M., and Robins, D. (1992) Androgen-specific gene activation via a consensus glucocorticoid response element is determined by interaction with nonreceptor factors. Proc. Natl. Acad. Sci. USA 89, 11,660–11,663.

    Article  PubMed  CAS  Google Scholar 

  19. Ning, Y. M. and Robins, D. M. (1999) AML3/CBFalpha1 is required for androgen-specific activation of the enhancer of the mouse sex-limited protein (Slp) gene. J. Biol. Chem. 274, 30,624–30,630.

    Article  PubMed  CAS  Google Scholar 

  20. Tymms, M. J., ed. (1999) Transcription factor protocols, in Methods in Molecular Biology, vol. 130. Humana Press, Totowa, NJ, pp. 91–164.

    Google Scholar 

  21. Chen, C. and Okayama, H. (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752.

    PubMed  CAS  Google Scholar 

  22. Felgner, P. L. and Ringold, G. M. (1989) Cationic liposome-mediated transfection. Nature 337, 387–388.

    Article  PubMed  CAS  Google Scholar 

  23. Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., et al. (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84, 7413–7417.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang, S., Danielsen, M. (1995) Selective effects of 8-Br-cAMP on agonists and antagonists of the glucocorticoid receptor. Endocrine 3, 5–12.

    Article  PubMed  CAS  Google Scholar 

  25. Lu, J. and Danielsen, M. (1998) Differential regulation of androgen and glucocorticoid receptors by retinoblastoma protein. J. Biol. Chem. 273, 31,528–31,533.

    Article  PubMed  CAS  Google Scholar 

  26. Smith, C. L., Oñate, S. A., Tsai, M.-J., and O’Malley, B. W. (1996) CREB binding protein acts synergistically with steroid receptor coactivator-1 to enhance steroid receptor-dependent transcription. Proc. Natl. Acad. Sci. USA 93, 8884–8888.

    Article  PubMed  CAS  Google Scholar 

  27. Danielsen, M., Northrop, J. P., and Ringold, G. M. (1986) The mouse glucocorticoid receptor: mapping of functional domains by cloning, sequencing and expression of wild-type and mutant receptor proteins. EMBO J. 5, 2513–2522.

    PubMed  CAS  Google Scholar 

  28. Price, J., Turner, D., and Cepko, C. (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc. Natl. Acad. Sci. USA 84, 156–160.

    Article  PubMed  CAS  Google Scholar 

  29. Southern, P. J. and Berg, P. (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1, 327–341.

    PubMed  CAS  Google Scholar 

  30. Zhang, S., Liang, X., and Danielsen, M. (1996) Role of the C-terminus of the glucocorticoid receptor in hormone binding and agonist/antagonist discrimination. Mol. Endocrinol. 10, 24–34.

    Article  PubMed  CAS  Google Scholar 

  31. Blackshear, P. J. (1984) Systems for polyacrylamide gel electrophoresis. Methods Enzymol. 104, 237–255.

    Article  PubMed  CAS  Google Scholar 

  32. Buckery, R. M., Colberg-poley, A. M., Eustice, D. C., Feldman, P. A., and Neubauer, R. H. (1991) A sensitive method for the detection of β-galactosidase. BioTechniques 11, 739–743.

    PubMed  Google Scholar 

  33. Szapary, D., Xu, M., and Simons, S. S., Jr. (1996) Induction properties of a transiently transfected glucocorticoid-responsive gene vary with glucocorticoid receptor concentration. J. Biol. Chem. 271, 30,576–30,582.

    Article  PubMed  CAS  Google Scholar 

  34. Gluzman, Y. (1981) SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23, 175–182.

    Article  PubMed  CAS  Google Scholar 

  35. Crabb, D. W. and Dixon, J. E. (1987) A method for increasing the sensitivity of chloramphenicol acetyltransferase assays in extracts of transfected cultured cells. Anal. Biochem. 163, 88–92.

    Article  PubMed  CAS  Google Scholar 

  36. Mader, S. and White, J. H. (1993) A steroid-inducible promoter for the controlled overexpression of cloned genes in eukaryotic cells. Proc. Natl. Acad. Sci. USA 90, 5603–5607.

    Article  PubMed  CAS  Google Scholar 

  37. Bonovich, M. T., List, H. J., Zhang, S., Danielsen, M., and Riegel, A. T. (1998) Identification of glucocorticoid receptor domains necessary for transcriptional activation of the mouse mammary tumor virus promoter integrated in the genome. Exp. Cell Res. 239, 454–462.

    Article  PubMed  CAS  Google Scholar 

  38. Hall, C. V., Jacob, P. E., Ringold, G. M., and Lee, F. (1983) Expression and regulation of Escherichia coli lacZ gene fusions in mammalian cells. J. Mol. Appl. Genet. 2, 101–109.

    PubMed  CAS  Google Scholar 

  39. Klein, E. S., Reinke, R., Feigelson, P., and Ringold, G. M. (1987) Glucocorticoidregulated expression from the 5’-flanking region of the rat alpha 1-acid glycopro tein gene. Requirement for ongoing protein synthesis. J. Biol. Chem. 262, 520–523.

    PubMed  CAS  Google Scholar 

  40. Hirst, M. A., Northrop, J. P., Danielsen, M., and Ringold, G. M. (1990) High level expression of wild type and variant mouse glucocorticoid receptors in Chinese hamster ovary cells. Mol. Endocrinol. 4, 162–170.

    Article  PubMed  CAS  Google Scholar 

  41. Hsiao, P. W. and Chang, C. (1999) Isolation and characterization of ARA160 as the first androgen receptor N-terminal-associated coactivator in human prostate cells. J. Biol. Chem. 274, 22,373–22,379.

    Article  PubMed  CAS  Google Scholar 

  42. Ikonen, T., Palvimo, J. J., Kallio, P. J., Reinikainen, P., and Janne, O. A. (1994) Stimulation of androgen-regulated transactivation by modulators of protein phosphorylation. Endocrinology 135, 1359–1366.

    Article  PubMed  CAS  Google Scholar 

  43. Cato, A. C., Miksicek, R., Schütz, G., Arnemann, J., and Beato, M. (1986) The hormone regulatory element of mouse mammary tumour virus mediates progesterone induction. EMBO J. 5, 2237–2240.

    PubMed  CAS  Google Scholar 

  44. Wagner, B. L., Norris, J. D., Knotts, T. A., Weigel, N. L., and McDonnell, D. P. (1998) The nuclear corepressors NCoR and SMRT are key regulators of both ligand-and 8-bromo-cyclic AMP-dependent transcriptional activity of the human progesterone receptor. Mol. Cell. Biol. 18, 1369–1378.

    PubMed  CAS  Google Scholar 

  45. Xu, J., Nawaz, Z., Tsai, S. Y., Tsai, M.-J., and O’Malley, B. W. (1996) The extreme C-terminus of progesterone receptor contains a transcriptional repressor domain that functions through a putative corepressor. Proc Natl Acad Sci USA 93, 12,195–12,199.

    Article  PubMed  CAS  Google Scholar 

  46. Conneely, O. M., Kettelberger, D. M., Tsai, M. J., Schrader, W. T., and O’Malley, B. W. (1989) The chicken progesterone receptor A and B isoforms are products of an alternate translation initiation event. J. Biol. Chem. 264, 14,062–14,064.

    PubMed  CAS  Google Scholar 

  47. Pearce, D. and Yamamoto, K. R. (1993) Mineralocorticoid and glucocorticoid receptor activities distinguished by nonreceptor factors at a composite response element. Science 259, 1161–1165.

    Article  PubMed  CAS  Google Scholar 

  48. Rogerson, F. M., Dimopoulos, N., Sluka, P., Chu, S., Curtis, A. J., and Fuller, P. J. (1999) Structural determinants of aldosterone binding selectivity in the mineralocorticoid receptor. J. Biol. Chem. 274, 36,305–36,311.

    Article  PubMed  CAS  Google Scholar 

  49. Govindan, M. V. and Warriar, N. (1998) Reconstitution of the N-terminal transcription activation function of human mineralocorticoid receptor in a defective human glucocorticoid receptor. J. Biol. Chem. 273, 24,439–24,447.

    Article  PubMed  CAS  Google Scholar 

  50. Fagart, J., Wurtz, J. M., Souque, A., Hellal-Levy, C., Moras, D., and Rafestin-Oblin, M. E. (1998) Antagonism in the human mineralocorticoid receptor. EMBO J. 17, 3317–3325.

    Article  PubMed  CAS  Google Scholar 

  51. Slater, E. P., Redeuilh, G., and Beato, M. (1991) Hormonal regulation of vitellogenin genes: an estrogen-responsive element in the Xenopus A2 gene and a multihormonal regulatory region in the chicken II gene. Mol. Endocrinol. 5, 386–396.

    Article  PubMed  CAS  Google Scholar 

  52. Tzukerman, M. T., Esty, A., Santiso-Mere, D., Danielian, P., Parker, M. G., Stein, R. B., Pike, J. W., and McDonnell, D. P. (1994) Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol. Endocrinol. 8, 21–30.

    Article  PubMed  CAS  Google Scholar 

  53. Danielian, P. S., White, R., Lees, J. A., and Parker, M. G. (1992) Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 11, 1025–1033.

    PubMed  CAS  Google Scholar 

  54. Reese, J. C. and Katzenellenbogen, B. S. (1991) Mutagenesis of cysteines in the hormone binding domain of the human estrogen receptor. Alterations in binding and transcriptional activation by covalently and reversibly attaching ligands. J. Biol. Chem. 266, 10,880–10,887.

    PubMed  CAS  Google Scholar 

  55. Elliston, J. F., Tsai, S. Y., O’Malley, B. W., and Tsai, M. J. (1990) Superactive estrogen receptors. Potent activators of gene expression. J. Biol. Chem. 265, 11,517–11,521.

    PubMed  CAS  Google Scholar 

  56. Green, S. and Chambon, P. (1987) Oestradiol induction of a glucocorticoidresponsive gene by a chimaeric receptor. Nature 325, 75–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Zhang, S., Danielsen, M. (2001). Cotransfection Assays and Steroid Receptor Biology. In: Lieberman, B.A. (eds) Steroid Receptor Methods. Methods in Molecular Biology™, vol 176. Humana Press. https://doi.org/10.1385/1-59259-115-9:297

Download citation

  • DOI: https://doi.org/10.1385/1-59259-115-9:297

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-754-0

  • Online ISBN: 978-1-59259-115-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics