Skip to main content

Phylogenetic Inference and Parsimony Analysis

  • Protocol
Steroid Receptor Methods

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 176))

  • 517 Accesses

Abstract

Application of phylogenetic inference methods to comparative endocrinology studies has provided researchers with a new set of tools to aid in understanding the evolution and distribution of gene families. Phylogeny, as defined by Hillis et al. (1), is the “historical relationships among lineages of organisms or their parts (e.g., genes).” Inferring phylogeny is a way of generating a best estimate of the evolutionary history of organisms (or gene families), based on the information (often incomplete, as in a gene sequence) that is available. The use of phylogenetic analyses, specifically those methods that are based on maximum parsimony, has changed the way in which characters and character states are determined and interpreted. Maximum parsimony (often simply called “parsimony”) seeks to estimate a parameter based on the minimum number of events required to explain the data. In this type of phylogenetic analysis, the best or optimal tree (generally portrayed as either a cladogram or phylogram, see Note1) is that topology which requires the fewest number of character-state changes (see below). That tree is arrived at based upon consideration of shared, derived characters. This method assumes that when two taxa (or genes) share a homologous derived character state, they do so because a common ancestor of both had that character state. One goal of phylogenetic analysis that is always implied (and often stated) is to avoid using characters that are homoplastic. Characters that have homoplasy have similarities in character states for reasons other than inheritance from a common ancestor, including convergent and parallel evolution or a reversal of state (e.g., A → G → A).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hillis, D. M., Moritz, C., and Mable, B. K. (eds.) (1996) Molecular Systematics, Sinauer, Sunderland,MA.

    Google Scholar 

  2. Felsenstein, J. (1993) PHYLIP (Phylogeny Inference Package), version 3.57, Department of Genetics, University of Seattle.

    Google Scholar 

  3. Kishino, H., Miyata, T., and Hasegawa, M. (1990) Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J. Mol. Evol. 31, 151–160.

    Article  CAS  Google Scholar 

  4. Adachi, J. and Hasegawa, M. (1992) MOLPHY: programs for molecular phylogenetics I-PROTML: Maximum likelihood inference for protein phylogeny. Computer Science Monographs, No. 27, Institute of Statistical Mathematics, Tokyo.

    Google Scholar 

  5. Swofford, D. L., Olsen, G. J., Waddell, P. J., and Hillis, D. M. (1996) Phlylogenetic inference, in Molecular Systematics (Hillis, D. M., Moritz, C., and Mable, B. K., eds.),Sinauer, Sunderland, MA, pp. 407–514.

    Google Scholar 

  6. Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  7. Altschul, S., Gish, W., Miller, W., Myers, E. W., and Lipman, J. (1990) Basic local alignment tool. J. Mol. Biol. 215, 403–410.

    PubMed  CAS  Google Scholar 

  8. Pearson, W. R. and Lipman, J. (1988) Improved tools for biological sequence comparison. Proc. Natl. Acad. Biol. USA 85, 2444–2448.

    Article  CAS  Google Scholar 

  9. Needleman, S. B. and Wunsch, C. D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453.

    Article  PubMed  CAS  Google Scholar 

  10. Feng, D.-F. and Doolittle, R. F. (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 25, 351–360.

    Article  PubMed  CAS  Google Scholar 

  11. Higgins, D. G., Bleasby, A. J., and Fuchs, R. (1992) CLUSTAL V: improved software for multiple sequence alignment. Comput. Appl. Biosci. 8, 189–191.

    PubMed  CAS  Google Scholar 

  12. Hein, J. (1989) A new method that simultaneously aligns and reconstructs ancestral sequences for any number of homologous sequences, when phylogeny is given. Mol. Biol. Evol. 6, 649–448.

    PubMed  CAS  Google Scholar 

  13. Wheeler, W. and Gladstein, D. (1994) MALIGN: a multiple sequence alignment program. J. Hered. 85, 417.

    Google Scholar 

  14. Fitch, W. M. (1971) Toward defining the course of evolution: minimal change for a specific tree topology. Syst. Zool. 20, 406–416.

    Article  Google Scholar 

  15. Camin, J. H. and Sokal, R. R. (1965) A method for deducing branching sequences in phylogeny. Evolution 19, 311–326.

    Article  Google Scholar 

  16. Eck, R. V. and Dayhoff, M. O. (eds.) (1966) Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Silver Springs, MD.

    Google Scholar 

  17. Goodman, M. (1981) Decoding the pattern of protein evolution. Progr. Biophys. Mol. Biol. 37, 105–164.

    Article  Google Scholar 

  18. Hendy, M. D. and Penny, D. (1982) Branch and bound algorithms to determine minimum evolutionary trees. Discrete Math. 96, 51–58.

    Article  Google Scholar 

  19. Swofford, D. L. (1999) PAUP*: Phylogenetic Analysis Using Parsimony, version 4.0b.2.Sinauer, Sunderland, MA.

    Google Scholar 

  20. Felsenstein, J. (1978) The number of evolutionary trees. Syst. Zool. 27, 27–33.

    Article  Google Scholar 

  21. Hillis, D. M. and Hulsenbeck, J. P. (1992) Signal, noise and reliability in molecular phylogenetic analysis. J. Hered. 83, 189–195.

    PubMed  CAS  Google Scholar 

  22. Hillis, D. M., Moritz, C., and Mable, B. K. (1996) Applications of molecular systematics, in Molecular Systematics (Hillis, D. M., Moritz, C., and Mable, B. K., eds.), Sinauer, Sunderland, MA, pp. 515–544.

    Google Scholar 

  23. Efron, B. and Tibshirani, R. J. (1993) An Introduction to the Bootstrap.Chapman and Hall, New York.

    Google Scholar 

  24. Xia, Z., Gale, W. L., Chang, X, Langenau, D., Patino, R., Maule, A. G., and Densmore, L. D. (2000) Phylogenetic sequence analysis, recombinant expression and tissue distribution of a channel catfish estrogen B receptor. Gen. Comp. Endocrinol. 118, 139–149.

    Article  PubMed  CAS  Google Scholar 

  25. Bremer, K. (1994) Branch support and tree stability. Cladistics 10, 295–304.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Densmore, L.D. (2001). Phylogenetic Inference and Parsimony Analysis. In: Lieberman, B.A. (eds) Steroid Receptor Methods. Methods in Molecular Biology™, vol 176. Humana Press. https://doi.org/10.1385/1-59259-115-9:23

Download citation

  • DOI: https://doi.org/10.1385/1-59259-115-9:23

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-754-0

  • Online ISBN: 978-1-59259-115-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics