Advertisement

Chemical Construction of Immunotoxins

Protocol
  • 567 Downloads
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 25)

Abstract

Immunotoxins (ITs) are chimeric proteins consisting of an antibody linked to a toxin. The antibody confers specificity (ability to recognize and react with the target), whereas the toxin confers cytotoxicity (ability to kill the target) (1, 2, 3). ITs have been used in both mice and humans to eliminate tumor cells, autoimmune cells, and virus-infected cells (4, 5, 6.

Keywords

Disulfide Bond Sulfhydryl Group Cyanuric Chloride Sodium Cyanoborohydride Sodium Metaperiodate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ghetie, V. and Vitetta, E. S. (1994) Immunotoxins in the therapy of cancer: from bench to clinic. Pharmacol. Ther. 63(3), 209–234.CrossRefPubMedGoogle Scholar
  2. 2.
    Thrush, G. R., Lark, L. R., and Vitetta, E. S. (1996) Immunotoxins (review), in Therapeutic Immunology (Austen, K. F., Burakoff, S. J., Rosen, F. S., and Strom, T. B., eds.), Blackwell Science, Boston, pp. 385–397.Google Scholar
  3. 3.
    Pai, L. H. and Pastan, I. (1993) Immunotoxin therapy for cancer. JAMA 269, 78–81.CrossRefPubMedGoogle Scholar
  4. 4.
    Frankel, A. E., Tagge, E. P., and Willingham, M. C. (1995) Clinical trials of targeted toxins. Semin. Cancer Biol. 6, 307–317.CrossRefPubMedGoogle Scholar
  5. 5.
    Ghetie, M. A. and Vitetta, E. S. (1994) Recent developments in immunotoxin therapy. Curr. Opin. Immunol. 6, 707–714.CrossRefPubMedGoogle Scholar
  6. 6.
    Grossbard, M. and Nadler, L. M. (1994) Immunotoxin therapy of lymphoid neoplasms. Semin. Hematol. 31, 88–97.PubMedGoogle Scholar
  7. 7.
    Wong, S. S. (1991) Chemistry of Protein Conjugation and Cross-Linking. CRC, Boca Raton, FL, pp. 267–294.Google Scholar
  8. 8.
    Vitetta, E. S., Thorpe, P. E., and Uhr, J. W. (1993) Immunotoxins: magic bullets or misguided missiles. Trends Pharmacol. Sci. 14, 148–154.Google Scholar
  9. 9.
    Brinkmann, U. and Pastan, I. (1994) Immunotoxins against cancer. Biochim. Biophys. Acta 1198, 27–45.PubMedGoogle Scholar
  10. 10.
    Kreitman, R. J. and Pastan, I. (1994) Recombinant toxins. Adv. Pharmacol. 28, 193–219.CrossRefPubMedGoogle Scholar
  11. 11.
    Carlsson, J., Drevin, H., and Axen, R. (1978) Protein thiolation and reversible protein-protein conjugation N-succinimidyl 3-(2-pyridyldithio)propionate, anew heterobifunctional reagent. Biochem. J. 173(3), 723–737.Google Scholar
  12. 12.
    Brinkley, M. A. (1992) A survey of methods for preparing protein conjugates with dyes, haptens and crosslinking reagents. Bioconjug. Chem. 3, 2–13.CrossRefPubMedGoogle Scholar
  13. 13.
    Thorpe, P. E., Wallace, P. M., Knowles, P. P., Relf, M. G., Brown, A. N. F., Watson, G. J., et al. (1988) Improved anti-tumor effects of immunotoxins prepared with deglycosylated ricin A chain and hindered disulfide linkages. Cancer Res. 48, 6396–6403.PubMedGoogle Scholar
  14. 14.
    FitzGerald, D., Idziorek, T., Batra, J. K., Willingham, M., and Pastan, I. (1990) Antitumor activity of a thioether-linked immunotoxin: OVB3-PE. Bioconjug. Chem. 1, 264–268.CrossRefPubMedGoogle Scholar
  15. 15.
    Lambert, J. M., Goldmacher, V. S., Collinson, A. R., Nadler, L. M., and Blattler, W. A. (1991) An immunotoxin prepared with blocked ricin: a natural plant toxin adapted for therapeutic use. Cancer Res. 51, 6236–6242.PubMedGoogle Scholar
  16. 16.
    Harris, W. J. and Cunningham, C. (1995) Antibody Therapeutics. Landis, Austin, TX.Google Scholar
  17. 17.
    Goding, J. W. (1996) Monoclonal Antibodies: Principles and Practices. Academic, London, pp. 192–227.Google Scholar
  18. 18.
    Lamoyi, E. and Nisonoff, A. (1983) Preparation of F(ab’)2 fragments from mouse IgG of various subclasses. J. Immunol. Methods 50, 234–243.Google Scholar
  19. 19.
    Parham, P. (1983) On the fragmentation of monoclonal IgG1, IgG2a and IgG2b from BALB/c mice. J. Immunol. 131, 2895–2902.PubMedGoogle Scholar
  20. 20.
    Ghetie, V., Ghetie, M., Uhr, J. W., and Vitetta, E. S. (1988) Large scale preparation of immunotoxins constructed with the Fab’ fragment of IgG1 murine monoclonal antibodies and chemically deglycosylated ricin A chain. J. Immunol. Methods 112, 267–277.CrossRefPubMedGoogle Scholar
  21. 21.
    Thorpe, P. E., Wallace, P. M., Knowles, P. P., Relf, M. G., Brown, A. N. F., Watson, G. J., et al. (1987) New coupling agents for the synthesis of immunotoxins containing a hindered disulfide bond with improved stability in vivo. Cancer Res. 47, 5924–5931.PubMedGoogle Scholar
  22. 22.
    Thorpe, P. E., Blakey, D. C., Brown, A. N., Knowles, P. P., Knyba, R. E., Wallace, P. M., et al. (1987) Comparison of two anti-Thy 1.1-abrin A-chain immunotoxins prepared with different cross-linking agents: antitumor effects, in vivo fate, and tumor cell mutants. J. Natl. Cancer Inst. 79, 1101–1112.PubMedGoogle Scholar
  23. 23.
    Ghetie, V., Thorpe, P. E., Ghetie, M., Knowles, P., Uhr, J. W., and Vitetta, E. S. (1991) The GLP large scale preparation of immunotoxins containing deglycosylated ricin A chain and a hindered disulfide bond. J. Immunol. Methods 142, 223–230.CrossRefPubMedGoogle Scholar
  24. 24.
    Lambert, J. M., Blattler, W. A., McIntyre, G. D., Goldmacher, V. S., and Scott, C. F., Jr. (1988) Immunotoxins containing single chain ribosome-inactivating proteins, in Immunotoxins (Franker, A. E., ed.), Kluwer, Norwell, MA, pp. 175–213.Google Scholar
  25. 25.
    Duncan, R. J., Weston, P. D., and Wrigglesworth, R. (1983) A new reagent which may be used to introduce sulfhydryl groups into proteins, and its use in the preparation of conjugates for immunoassay. Anal. Biochem. 132, 68–73.CrossRefPubMedGoogle Scholar
  26. 26.
    Hashida, S., Imagawa, M., Inque, S., Ruan, K. H., and Ishikawa, E. (1983) More useful maleimide compounds for the conjugation of Fab to horseradish peroxidase through thiol groups in the hinge. J. Appl. Biochem. 6, 56–63.Google Scholar
  27. 27.
    Lambert, J. M., McIntyre, G., Gauthier, M. N., Zullo, D., Rao, V., Steeves, R. M., et al. (1997) The galactose-binding sites of the cytotoxic lectin ricin can be chemically blocked in high yield with reactive ligands prepared by chemical modification of glycopeptides containing triantennary N-linked oligosaccharides. Biochemistry 30, 3234–3247.Google Scholar
  28. 28.
    Thorpe, P. E., Detre, S. I., Foxwell, B. M. J., Brown, A. N. F., Skilleter, D. N., Wilson, G., et al. (1985) Modification of the carbohydrate in ricin with metaperiodate-cyanoborohydride mixtures. Effects on toxicity and in vivo distribution. Eur. J. Biochem. 147, 197–206.CrossRefPubMedGoogle Scholar
  29. 29.
    Ghetie, M., May, R. D., Till, M., Uhr, J. W., Ghetie, V., Knowles, P. P., et al. (1988) Evaluation of ricin A chain-containing immunotoxins directed against CD 19 and CD22 antigens on normal and malignant human B-cells as potential reagents for in vivo therapy. Cancer Res. 48, 2610–2617.PubMedGoogle Scholar
  30. 30.
    Ghetie, V., Till, M. A., Ghetie, M., Tucker, T., Porter, J., Patzer, E. J., et al. (1990) Preparation and characterization of conjugates of recombinant CD4 and deglycosylated ricin A chain using different cross-linkers. Bioconjug Chem. 1, 24–31.CrossRefPubMedGoogle Scholar
  31. 31.
    Fulton, R. J., Blakey, D. C., Knowles, P. P., Uhr, J. W., Thorpe, P. E., and Vitetta, E. S. (1986) Production of ricin A1, A2, and B chains and characterization of their toxicity. J. Biol. Chem. 261, 5314–5319.PubMedGoogle Scholar
  32. 32.
    Irvin, J. D. (1983) Pokeweed antiviral protein. Pharmacol. Ther. 21, 371–387.CrossRefPubMedGoogle Scholar
  33. 33.
    Irvin, J. D. and Uckun, F. M. (1997) Pokeweed antiviral protein: Ribosome inactivation and therapeutic applications. Pharmacol. Ther. 55, 279–302.CrossRefGoogle Scholar
  34. 34.
    Myers, D. E., Irvin, J. D., Smith, R. S., Kuebelbeck, V. M., and Uckun, F. M. (1991) Production of a pokeweed antiviral protein (PAP)-containing immunotoxin, B43-PAP, directed against the CD19 human B lineage lymphoid differentiation antigen in highly purified form for human clinical trials. J. Immunol. Methods 136, 221–237.CrossRefPubMedGoogle Scholar
  35. 35.
    Ogata, M., Chaudhary, V. K., Pastan, I., and Fitzgerald, D. J. (1997) Processing of pseudomonas exotoxin by a cellular protease results in the generation of a 37,000-Da toxin fragment that is translocated to the cytosol. J. Biol. Chem. 265, 20, 678–20,685.Google Scholar
  36. 36.
    Allured, V. S., Collier, R. J., Carroll, S. F., and McKay, D. B. (1986) Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. Proc. Natl. Acad. Sci. USA 83, 1320–1324.CrossRefPubMedGoogle Scholar
  37. 37.
    Hwang, J., FitzGerald, D. J., Adhya, S., and Pastan, I. (1987) Functional domains of Pseudomonas exotoxin identified by deletion analysis of the gene expressed in E. coli. Cell 48, 129–136.Google Scholar
  38. 38.
    Kreitman, R. J., Hansen, H. J., Jones, A. L., FitzGerald, D. J. P., Goldenberg, D. M., and Pastan, I. (1993) Pseudomonas exotoxin-based immunotoxins containing the antibody LL2 or LL2-Fab’ induce regression of subcutaneous human B-cell lymphoma in mice. Cancer Res. 53, 819–825.PubMedGoogle Scholar
  39. 39.
    Mansfield, E., Pastan, I., FitzGerald, D. J. (1996) Characterization of RFB4-Pseudomonas exotoxin A immunotoxins targeted to CD22 on B-cell malignancies. Bioconjug. Chem. 7, 557–563.CrossRefPubMedGoogle Scholar
  40. 40.
    Ghetie, V., Swindell, E., Uhr, J. W., and Vitetta, E. S. (1993) Purification and properties of immunotoxins containing one vs two deglycosylated ricin A chain. J. Immunol. Methods 166, 117–122.CrossRefPubMedGoogle Scholar
  41. 41.
    Ghetie, V., Engert, A., Schnell, R., and Vitetta, E. S. (1995) The in vivo anti-tumor activity of immunotoxins containing two vs one deglycosylated ricin A chains. Cancer Lett. 98(1), 97–101.PubMedGoogle Scholar
  42. 42.
    Fraker, P. J. and Speck, J. C., Jr. (1978) Protein and cell membrane iodinations with a sparingly soluble chloramide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril. Biochem. Biophys. Res. Commun. 80, 849–857.Google Scholar
  43. 43.
    Ghetie, M. A., Richardson, J., Tucker, T., Jones, D., Uhr, J. W., and Vitetta, E. S. 1990) Disseminated or localized growth of a human B-cell tumor (Daudi) in SCID mice. Int. Cancer 45, 481–485.Google Scholar
  44. 44.
    Ghetie, M. A., Richardson, J., Tucker, T., Jones, D., Uhr, J. W., and Vitetta, E. S. (1991) Antitumor activity of Fab’ and IgG-anti-CD22 immunotoxins in disseminated human B lymphomas grown in mice with severe combined immunodeficiency disease: effect on tumor cells in extranodal sites. Cancer Res. 51, 5876–5880.PubMedGoogle Scholar
  45. 45.
    Ghetie, M. A., Tucker, K., Richardson, J., Uhr, J. W., and Vitetta, E. S. (1992) The antitumor activity of an anti-CD22 immunotoxin in SCID mice with disseminated Daudi lymphoma is enhanced by either an anti-CD 19 antibody or an anti-CD 19 immunotoxin. Blood 80, 2315–2320.PubMedGoogle Scholar
  46. 46.
    Uckun, F. M., Ramakrishnan, S., and Houston, L. L. (1985) Immunotoxin-mediated elimination of clonogenic tumor cells in the presence of human bone marrow. J. Immunol. 134, 2010–2016.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  1. 1.Department of Microbiology and Cancer Immunobiology CenterThe University of Texas South Western Medical Center at Dallas

Personalised recommendations