Skip to main content

Structural Analysis of the Microtubule–Kinesin Complex by Cryo-Electron Microscopy

  • Protocol
Kinesin Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 164))

Abstract

The structures of microtubule-kinesin complexes have been intensely studied within the last few years by using negative stain or cryo-electron microscopy (cryo-EM; for a review, see ref. 1) and digital three-dimensional (3D) image reconstruction (24). On a working system, these methods constitute a straightforward approach to generate 3D data at around 20 Å resolution within a few weeks. Such maps all ow the interpretation the 3D configuration of protein domains such as the binding geometry of kinesin motor heads to tubulin protofilaments (5) or the configuration of dimeric kinesin motor domains when bound to microtubules under different nucleotide conditions (68). More recently, the availability of near-atomic-resolution data of the components of microtubule-kinesin complexes, namely the αβ-tubulin dimer (9) and several monomeric and dimeric kinesin motor constructs (for a review, see ref. 10), made it possible to interpret the structure of an intact microtubule (11) and the motor-tubulin interactions at near-atomic detail (8,12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dubochet, J., Adrian, M., Chang, J.-J., Homo, J.-C., Lepault, J., MeDowall, A. W., and Schultz, P. (1988) Cryo-electron microscopy of vitrified specimens. Quart. Rev. Biophys. 21, 129–228.

    Article  CAS  Google Scholar 

  2. DeRosier, D. and Moore, P. B. (1970) Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J. Mol. Biol. 52, 355–369.

    Article  PubMed  CAS  Google Scholar 

  3. Amos, L. A., Henderson, R., and Unwin, P. N. T. (1982) Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog. Biophys. Mol. Biol. 39, 183–231.

    Article  PubMed  CAS  Google Scholar 

  4. Frank, J. (1996) Three-Dimensional Electron Microscopy of Macromolecular Assemblies (Frank., J., ed.), Academic, San Diego, CA.

    Google Scholar 

  5. Hoenger, A. and Milligan, R. A. (1997) Motor domains of kinesin and Ncd interact with microtubule protofilaments with the same binding geometry. J. Mol. Biol. 265, 553–564.

    Article  PubMed  CAS  Google Scholar 

  6. Hirose, K., Lockhart, A., Cross, R. A., and Amos, L. A. (1996) Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc. Natl. Acad. Sci. USA 93, 9539–9544.

    Article  PubMed  CAS  Google Scholar 

  7. Arnal, I. and Wade, R. H. (1998) Nucleotide-dependent conformations of the kinesin dimer interacting with microtubules. Structure 6, 33–38.

    Article  PubMed  CAS  Google Scholar 

  8. Hoenger, A., Sack, S., Thormaehlen, M., Marx, A., Mueller, J., Gross, H., and Mandelkow, E. (1998) Image reconstruction of microtubules decorated with monomeric and dimeric kinesins: comparison with X-ray structure and implications for motility. J. Cell Biol. 141, 419–430.

    Article  PubMed  CAS  Google Scholar 

  9. Nogales, E., Wolf, S. G., and Downing, K. H. (1998) Structure of the u13 tubulin dimer by electron crystallography. Nature 391, 199–203.

    Article  PubMed  CAS  Google Scholar 

  10. Mandelkow, E. and Hoenger, A. (1999) Structures of kinesin and kinesin-microtubule interactions. Curr. Opin. Cell Biol. 11, 34–44.

    Article  PubMed  CAS  Google Scholar 

  11. Nogales, E., Whittaker, M., Milligan, R. A., and Downing, K. H. (1999) Highresolution model of the microtubule. Cell 96, 79–88.

    Article  PubMed  CAS  Google Scholar 

  12. Sosa, H., Dias, D. P., Hoenger, A., Whittaker, M., Wilson-Kubalek, E., Sablin, E., et al. (1997) A model for the microtubule-Ned motor protein complex obtained by cryo-electron microscopy and image analysis. Cell 90, 217–224.

    Article  PubMed  CAS  Google Scholar 

  13. Wade, R. H., Chrétien, D., and Job, D. (1990) Characterization of microtubule protofilament numbers; how does the surface lattice accommodate? J. Mol. Biol. 212, 775–786.

    Article  PubMed  CAS  Google Scholar 

  14. Song, Y. H. and Mandelkow, E. (1995) The anatomy of flagellar microtubules: polarity, seam, junctions, and lattice. J. Cell Biol. 128, 81–94.

    Article  PubMed  CAS  Google Scholar 

  15. Sosa, H. and Milligan R. A. (1996) Three-dimensional structure of ncd decorated microtubules obtained by a back-projection method. J. Mol. Biol. 260, 743–755.

    Article  PubMed  CAS  Google Scholar 

  16. Baker, T. S. and Johnson, J. E. (1996) Low resolution meets high: towards a resolution continuum from cells to atoms. Curr. Opin. Struct. Biol. 6, 585–594.

    Article  PubMed  CAS  Google Scholar 

  17. Wriggers, W., Milligan, R. A., Schulten, K., and McGammon, J. A. (1998) Selforganizing neural networks bridge the biomolecular resolution gap. J. Mol. Biol. 284, 1247–1254.

    Article  PubMed  CAS  Google Scholar 

  18. Wriggers, W., Milligan, R. A., and MeGammon, J. A. (2000?) Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125, 185–195.

    Article  Google Scholar 

  19. Hyman, A., Drechsel, D., Kellog, D., Salser, S., Sawin, K., Steffen, P., et al. (1991) Preparation of modified tubulins. Methods Enzymol. 196, 478–485.

    Article  PubMed  CAS  Google Scholar 

  20. Ray, S., Wolf, S. G., Howard, J., and Downing, K. H. (1995) Kinesin does not support the motility of Zn-macrotubes. Cell Motil. Cytoskel. 30, 146–152.

    Article  CAS  Google Scholar 

  21. Leberman, R. (1965) Use of uranyl formate as a negative stain. J. Mol. Biol. 13, 606–611.

    Article  PubMed  CAS  Google Scholar 

  22. Glaeser, R. M. and Taylor, K. A. (1978) Radiation damage relative to transmission electron microscopy of biological specimens at low temperature. J. Microsc. 112, 127–138.

    PubMed  CAS  Google Scholar 

  23. Van Heel, M., Harauz, G., and Orlova, E. (1996) A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24.

    Article  PubMed  Google Scholar 

  24. Whittaker, M., Carragher, B. O., and Milligan, R. A. (1995) PHOELIX: a package for semi-automated helical reconstruction. Ultramicroscopy 58, 245–259.

    Article  PubMed  CAS  Google Scholar 

  25. Schroeter, J. P. and Bretaudiere, J.-P. (1996) SUPRIM: Easily modified image processing software. J. Struct. Biol. 116, 131–137.

    Article  PubMed  CAS  Google Scholar 

  26. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929.

    Article  PubMed  CAS  Google Scholar 

  27. Lepault, J. and Leonard, K. (1985) Three-dimensional visualization of unstained, frozen-hydrated extended tails of bacteriophage T4. J. Mol. Biol. 182, 431–441.

    Article  PubMed  CAS  Google Scholar 

  28. Aebi U., Fowler W. E., Buhle E. L., and Smith, P. R. (1984) Microscopy and image processing applied to the study of protein structure and protein-protein interaction. J. Ultrastruct. Res. 88, 143–176.

    Article  PubMed  CAS  Google Scholar 

  29. Hoenger, A. and Aebi, U. (1996) 3-D reconstruction from ice-embedded and negatively stained biomacromolecular assemblies: a critical comparison. J. Struct. Biol. 117, 99–116.

    Article  Google Scholar 

  30. Safer, D. Bolinger, L., and Leigh, J. S. (1986) Undeca-gold clusters for site specific labeling of biological macromolecules. J. Inorg. Biochem. 26, 77–91.

    Article  PubMed  CAS  Google Scholar 

  31. Woehlke, G., Ruby, A. K., Hart, C. L., Ly, B., Hom-Booher, N., and Vale, R. D. (1997) Microtubule interaction site of the kinesin motor. Cell 90, 207–216.

    Article  PubMed  CAS  Google Scholar 

  32. Alonso, M. C., Vandamme, J., Vandekerckhove, J., and Cross, R. (1998) Proteolytic mapping of kinesinlNcd-microtubule interface: nucleotide-dependent conformational-changes in the hoops L8 and L12. EMBO J. 17, 945–951.

    Article  PubMed  CAS  Google Scholar 

  33. Jones, T. A., Zou, J. Y., Cowan, S. W., and Kjeldgaard, M. (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119.

    CAS  Google Scholar 

  34. Cyrklaff, M., Adrian M., and Dubochet, J. (1990) Evaporation during preparation of unsupported thin vitrified aqueous layers for cryo-electron microscopy. J. Electron Microsc. Technol. 16, 351–355.

    Article  CAS  Google Scholar 

  35. Trachtenberg, S. (1998) A fast-freezing device with a retractable environmental chamber suitable for kinetic cryo-electron microscopy studies. J. Struct. Biol. 123, 45–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Beuron, F., Hoenger, A. (2001). Structural Analysis of the Microtubule–Kinesin Complex by Cryo-Electron Microscopy. In: Vernos, I. (eds) Kinesin Protocols. Methods in Molecular Biology™, vol 164. Humana Press. https://doi.org/10.1385/1-59259-069-1:235

Download citation

  • DOI: https://doi.org/10.1385/1-59259-069-1:235

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-766-3

  • Online ISBN: 978-1-59259-069-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics