Skip to main content

A Dominant Negative Approach for Functional Studies of the Kinesin II Complex

  • Protocol
Kinesin Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 164))

Abstract

There are a few ways to generate a dominant negative mutant. Specifically for the study of functions of motor proteins, two approaches have been successfully used. The first approach consists of the deletion of the motor domain. In this case the mutant protein is not able to hydrolyze ATP or/and bind to the cytoskeleton, and consequently, unable to promote movement. This is often referred to as a “headless” mutant, as the motor domain is commonly referred as the “head” of a motor protein. This strategy has been used previously for the study of motor protein functions for both microtubule and actin-based motors (13). The second type of dominant negative mutant is a rigor mutant, generated by a point mutation in the ATP-binding site; as a result, the motor binds to the cytoskeletal filament (actin or microtubules) but cannot hydrolyze ATP; this ATP-bound form of the motor is irreversibly locked to its cytoskeleton partner, a state defined as a rigor complex. Rigor mutants have been first identified, sequenced, and characterized for the yeast kinesin-like motor Kar3p (4) and Drosophila melanogaster nod (5). In both cases, the mutant protein was shown to bind irreversibly to microtubules. These observations suggested the use of rigor mutants as a tool for investigating the function of kinesin-like motors, and this approach has been successfully used for conventional kinesin (6).

In order to generate a dominant negative mutant of kinesin II, we chose to use the “headless” approach for two reasons. First, it is known that kinesin II forms

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burns, C. G., Larochelle, D. A., Erickson, H., Reedy, M., and De Lozanne, A. (1995) Single-headed myosin II acts as a dominant negative mutation in Dictyostelium. Proc. Natl. Acad. Sci. USA 92, 8244–8248.

    Article  PubMed  CAS  Google Scholar 

  2. Bi, G. Q., Morris, R. L., Liao, G., Alderton, J. M., Scholey, J. M., and Steinhardt, R. A. (1997) Kinesin-and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J. Cell Biol. 138, 999–1008.

    Article  PubMed  CAS  Google Scholar 

  3. Arhets, P., Olivo, J.-C., Gounon, P., Sansonetti, P., and Guillen, N. (1998) Virulence and functions of myosin II are inhibited by overexpression of light meromyosin in Entamoeba histolytica. Mol. Biol. Cell. 9, 1537–1547.

    PubMed  CAS  Google Scholar 

  4. Meluh, P. B. and Rose, M. D. (1990) Kar3, a kinesin-related gene required for yeast nuclear fusion. Cell 60, 1029–1041.

    Article  PubMed  CAS  Google Scholar 

  5. Rasooly, R. S., New, C. M., Zhang, P., Hawley, R. S., and Baker, B. S. (1991) The lethal (1) TW-6cs mutation of Drosophila melanogaster is a dominant antimorphic allele of nod and is associated with a single base change in the putative ATP-binding domain. Genetics 129, 409–422.

    PubMed  CAS  Google Scholar 

  6. Nakata, T. and Hirokawa, N. (1995) Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. J. Cell Biol. 131, 1039-1053.

    Google Scholar 

  7. Rashid, D. J., Wedaman, K. P., and Scholey, J. M. (1995) Heterodimerization of the two motor subunits of the heterotrimeric kinesin, KRP (85/95). J. Mol. Biol. 252, 157–162.

    Article  PubMed  CAS  Google Scholar 

  8. Hackney, D. D. (1994) Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl. Acad. Sci. USA 91, 6865–6869.

    Article  PubMed  CAS  Google Scholar 

  9. Gilbert, S. P., Webb, M. R., Brune, M., and Johnson, K. A. (1995) Pathway of processive ATP hydrolysis by kinesin [see comments]. Nature 373, 671–676.

    Article  PubMed  CAS  Google Scholar 

  10. Vale, R. D., Funatsu, T., Pierce, D. W., Romberg, L., Harada, Y., and Yanagida, T. (1996) Direct observation of single kinesin molecules moving along microtubules. Nature. 380, 451–453.

    Article  PubMed  CAS  Google Scholar 

  11. Cole, D. G. and Scholey, J. M. (1995) Structural variations among the kinesins. Trends Cell Biol. 5, 259–262.

    Article  PubMed  CAS  Google Scholar 

  12. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  13. Reilein, A. R., Tint, I. S., Peunova, N. I., Enikolopov, G. N., and Gelfand, V. I. (1998) Regulation of organelle movement in melanophores by protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2A (PP2A). J. Cell Biol. 142, 803-813.

    Google Scholar 

  14. Tuma, M. C., Zill, A., Le Bot, N., Vernos, I., and Gelfand, V. (1998) Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores. J. Cell Biol. 143, 1547–1558.

    Article  PubMed  CAS  Google Scholar 

  15. Daniolos, A., Lerner, A. B., and Lerner, M. R. (1990) Action of light on frog pigment cells in culture. Pigment Cell Res. 3, 38–43.

    Article  PubMed  CAS  Google Scholar 

  16. Le Bot, N., Antony, C., White, J., Karsenti, E., and Vernos, I. (1998) Role of xklp3, a subunit of the Xenopus kinesin II heterotrimeric complex, in membrane transport between the endoplasmic reticulum and the Golgi apparatus. J. Cell Biol. 143, 1559–1573.

    Article  PubMed  Google Scholar 

  17. Boleti, H., Karsenti, E., and Vernos, I. (1996) Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis. Cell. 84, 49–59.

    Article  PubMed  CAS  Google Scholar 

  18. Harlow, E. and Lane, D. (1988) Storing and purifying antibodies, in Antibodies. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Gelfand, V.I., Le Bot, N., Carolina Tuma, M., Vernos, I. (2001). A Dominant Negative Approach for Functional Studies of the Kinesin II Complex. In: Vernos, I. (eds) Kinesin Protocols. Methods in Molecular Biology™, vol 164. Humana Press. https://doi.org/10.1385/1-59259-069-1:191

Download citation

  • DOI: https://doi.org/10.1385/1-59259-069-1:191

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-766-3

  • Online ISBN: 978-1-59259-069-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics