Skip to main content

Detection and Purification of a Multiprotein Kinase Complex from Mammalian Cells

IKK Signalsome

  • Protocol
Stress Response

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 99))

  • 1451 Accesses

Abstract

Steady progress has been made in our understanding of the mechanisms by which intracellular signals are relayed from the cell membrane to the nucleus. One theme that has emerged from studies of several different pathways involves the integration of key signaling proteins into multiprotein complexes. Such a mechanism organizes the proper repertoire of proteins into specific signaling pathways, preventing inappropriate activation of regulatory proteins such as transcription factors or cell cycle regulators. Varying combinations of related enzymes in a complex, often in a cell-specific manner, enables the propagation of distinct cellular responses. The precise mode of regulation can take many forms. For example, cell activation can initiate recruitment of key regulatory proteins into a higher-order complex, resulting in the sequential activation of a kinase cascade. Alternatively, enzymes may already exist as part of a multiprotein complex that functions to maintain their steady-state activity and, at the same time, properly position the enzymes so as to respond to incoming signals from the cellular environment. Such complexes could be regulated through control of their subcellular localization. Higher-order complex formation is mediated, in part, by small conserved protein-protein interaction motifs, including leucine zipper, helix-loop-helix, WW, WD-40, SH2, SH3, PH, PTB, and PDZ motifs (1). Determination of the full complement of proteins comprising these signaling complexes would greatly enhance our understanding of how specificity is achieved in the regulation of cellular processes. Furthermore, the identification of one or more components comprising a multiprotein complex would enable the development of immunoaffinity purification protocols for the purification and characterization of additional unknown components within that complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sudol M. (1998) From Src homology domains to other signaling modules: proposal of the “protein recognition code.” Oncogene 17, 1469–1474.

    Article  PubMed  CAS  Google Scholar 

  2. Baldwin A. S. (1996) The NF-Gκ and Iκ proteins: New discoveries and insights. Annu. Rev. Immunol. 14, 649–681.

    Article  PubMed  CAS  Google Scholar 

  3. May M. J. and Ghosh S. (1998) Signal transduction through NF-Gκ. Immunology Today 19, 80–88.

    Article  PubMed  CAS  Google Scholar 

  4. Brown K., Gerstberger S., Carlson L., Franzoso G., and Siebenlist U. (1995) Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 267, 1485–1488.

    Article  PubMed  CAS  Google Scholar 

  5. DiDonato J., Mercurio F., Rosette C., Wu-Li J., Suyang H., Ghosh S., and Karin M. (1996) Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16, 1295–1304.

    PubMed  CAS  Google Scholar 

  6. Mercurio F., Zhu H., Murray B. W., Shevchenko A., Bennett B. L., Li J., Young D. B., Barbosa M., Mann M., Manning A. M., and Rao A. (1997) IKK-1 and IKK-2: Cytokine-activated Iκ kinases essential for NF-κ activation. Science 278, 860–866.

    Article  PubMed  CAS  Google Scholar 

  7. Lee F. S., Hagler J., Chen Z. J., and Maniatis T. (1997) Activation of the IκOC complex by MEKK1, a kinase of the JNK pathway. Cell 88, 213–222.

    Article  PubMed  CAS  Google Scholar 

  8. Nakano H., Shindo M., Sakon S., Nishinaka S., Mihara M., Yagita H., and Okumura K. (1998) Differential regulation of Iκ kinase a and p by two upstream kinases, NF-κ-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc. Natl. Acad. Set USA 95, 3537–3542.

    Article  CAS  Google Scholar 

  9. Malinin N. L., Boldin M. P., Kovalenko A. V., and Wallach D. (1997) MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature 385, 540–544.

    Article  PubMed  CAS  Google Scholar 

  10. DiDonato J. A., Hayakawa M., Rothwarf D. M., Zandi E., and Karin M. (1997) A cytokine-responsive Iκ kinase that activates the transcription factor NF-κ Nature 388, 853–862.

    Google Scholar 

  11. Zandi E., Rothwarf D. M., Delhasse M., Hayakawa M., and Karin M. (1997) The IkB kinase complex (IKK) contains two kinase subunits, IKKa and IKKp, necessary for Iκ phosphorylation and NF-κ activation. Cell 91, 243–252.

    Article  PubMed  CAS  Google Scholar 

  12. Mercurio F., Murray B., Bennett B. L., Pascual G., Shevchenko A., Zhu H., Young D. B., Li J., Mann M., and Manning M. (1999) IKKAP-1, a novel regulator of NF-κ activation, reveals heterogeneity in Iκ complexes. Mol. Cell. Biol. 19, 1526–1538.

    PubMed  CAS  Google Scholar 

  13. O’Connell M. A., Bennett B. L., Mercurio F., Manning A., and Mackman N. (1998) Role of IKK1 and IKK2 in lipopolysaccharide signaling in human monocytic cells. J. Biol. Chem. 273, 30,410–30,414.

    Article  PubMed  Google Scholar 

  14. Rothwarf D. M., Zandi E., Natoli G., and Karin M. (1998) IKK-gamMa is an essential regulatory subunit of the IkappaB kinase complex. Nature 395, 297–300.

    Article  PubMed  CAS  Google Scholar 

  15. Yaron A., Hatzubai A., Davis M., Lavon I., Amit S., Manning A., Andersen J., Mann M., Mercurio F., and Ben-Neriah Y. (1998) Identification of the receptor component of the iκa-ubiquitin ligase. Nature 396, 590–594.

    Article  PubMed  CAS  Google Scholar 

  16. Yaron A., Alkalay I., Gonen H., Hatzubai A., Jung S., and Beyth S. (1997) Inhibition of NF-κ cellular function via specific targeting of the Iκ ubiquitin ligase. EMBO J. 16, 101–107.

    Article  Google Scholar 

  17. Laemli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–695.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Mercurio, F., Young, D.B., Manning, A.M. (2000). Detection and Purification of a Multiprotein Kinase Complex from Mammalian Cells. In: Walker, J.M., Keyse, S.M. (eds) Stress Response. Methods in Molecular Biology™, vol 99. Humana Press. https://doi.org/10.1385/1-59259-054-3:109

Download citation

  • DOI: https://doi.org/10.1385/1-59259-054-3:109

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-611-6

  • Online ISBN: 978-1-59259-054-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics