Skip to main content

Monosaccharide Composition of Mucins

  • Protocol
Glycoprotein Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 125))

  • 1372 Accesses

Abstract

Mucin oligosaccharides are constructed by monosaccharide addition to form common cores. This architecture limits the number of constituent monosaccharides. Monosaccharides commonly found in mucins may be divided into neutral (galactose [Gal]; fucose [Fuc]), hexosamines (N-acetylgalactosamine [GalNAc]; N-acetyl-glucosamine [GlcNAc]), and acidic compounds (sialic acids [NeuAc]). Additive heterogeneity comes from the possible substitution with aglycone residues such as sulfate, phosphate, or acetate groups. Prior to their analysis, monosaccharides must be released from the oligosaccharide chain by acidic hydrolysis. Monosaccharide composition can also be achieved on free oligosaccharide-alditols released from the native glycoprotein by reductive alkaline treatment (β-elimination). In this case, GalNAc is converted into N-acetylgalactosaminitol (GalNAc-ol). Different methods are available for the analysis of monosaccharides depending mainly on the amount of material available. Several techniques, such as gas-liquid chromatography (GLC) or high-performance liquid chromatography (HPLC), allow both quantitative and qualitative analysis of monosaccharide mixtures. Other chromatographic or electrophoretic procedures are described herein, but these only allow a rapid qualitative analysis of samples. Single separated monosaccharides may be further identified by physicochemical methods such as mass spectrometry (MS) or nuclear magnetic resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schauer R. and Kamerling J. P. (1997) Chemistry, Biochemistry and Biology of Sialic acids. New Comprehens. Biochem. 29b, 243–402.

    Article  CAS  Google Scholar 

  2. Varki A. (1992) Diversity in the sialic acids. Glycobiology 2, 25–40

    Article  PubMed  CAS  Google Scholar 

  3. Schauer R. (1987) Analysis of sialic acids. Methods Enzymol. 138, 132–161.

    Article  PubMed  CAS  Google Scholar 

  4. Powell L. D. and Hart G. W. (1986) Quantification of picomole levels of N-acetyl-and N-glycolyl neuraminic acids by HPLC adaptation of the thiobarbituric acid assay. Anal. Biochem. 157, 179–185.

    Article  PubMed  CAS  Google Scholar 

  5. Hara S., Takemori Y. Yamaguchi M., Nakamura M., and Ohkura Y. (1987) Fluoro-metric high performance liquid chromatography of N-acetyl-and N-glycolyl neuraminic acids and its application to their microdetermination in human and animal sera, glycopro-teins and glycolipids. Anal. Biochem. 164, 138–145.

    Article  PubMed  CAS  Google Scholar 

  6. Hara S., Yamaguchi M., Takemori Y., Furihata K., Ogura H., and Nakamura M. (1989) Determination of mono-O-acetylated N-acetylneuraminic acids in human and rat sera by fluorometric high performance liquid chromatography. Anal. Biochem. 179, 162–166.

    Article  PubMed  CAS  Google Scholar 

  7. Manzi A. E., Diaz S., and Varki A. (1990) High-performance liquid chromatography of sialic acids on a pellicular resin anion-exchange column with pulsed amperometric detection: a comparison with six other systems. Anal Biochem 188, 20–32.

    Article  PubMed  CAS  Google Scholar 

  8. Klein A., Diaz S., Ferreira I. Lamblin G., Roussel P., and Manzi A. E. (1997) New sialic acids from biological sources identified by a comprehensive and sensitive approach: liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) of SIA quinoxalinones. Glycobiology 7, 421–432.

    Article  PubMed  CAS  Google Scholar 

  9. Michalski J. C. (1995) Analysis of monosaccharides by GLC and HPLC in Methods on Glycoconjugates-A Laboratory Manual, (Verbert A., ed.), Harwood, pp. 31–40.

    Google Scholar 

  10. Chaplin M. F. (1994) Monosaccharides in Carbohydrate Analysis, A Practical Approach, 2nd ed., (Chaplin M. F. and Kennedy J. F., eds.), IRL Press, pp. 1–42.

    Google Scholar 

  11. Mellis S. J. and Baenziger J. U. (1983) Size fractionation of anionic oligosaccharides and glycopeptides by high performance liquid chromatography. Anal. Biochem. 134, 442–449.

    Article  PubMed  CAS  Google Scholar 

  12. Natowicz M. and Baenziger J. U. (1980) A rapid method for chromatographic analysis of oligosaccharides on Bio-Gel P4. Anal. Biochem. 105, 159–164.

    Article  PubMed  CAS  Google Scholar 

  13. Green E. D. and Baenziger J. U. (1986) Separation of anionic oligosaccharides by high performance liquid chromatography. Anal. Biochem. 158, 42–49.

    Article  PubMed  CAS  Google Scholar 

  14. Hase S. Ikenaka T., and Matsushima Y. (1978) Structure analyses of oligosaccharides by tagging of the reducing end sugars with a fluorescent compound. Biochem. Biophys. Res. Commu., 85, 257–263.

    Article  CAS  Google Scholar 

  15. Hardy M. R., Townsend R. R., and Lee Y. C. (1988) Monosaccharide analysis of glycoconjugates by anion-exchange chromatography with pulsed amperometric detection. Anal Biochem 170, 54–62.

    Article  PubMed  CAS  Google Scholar 

  16. Roberts E. J., Wade C. P., and Rowland S. P. (1971) Effect of base concentration upon the reactivities of the hydroxyl groups in methyl D-glucopyranosides, Carbohydr. Res. 17, 393–399.

    Article  PubMed  CAS  Google Scholar 

  17. Lee Y. C. (1990) High-performance anion-exchange chromatography for carbohydrate analysis. Anal. Biochem. 189, 151–162.

    Article  PubMed  CAS  Google Scholar 

  18. Lee Y. C. (1996) Carbohydrate analyses with high-performance anion-exchange chroma-tography. J. Chromatogr. A. 720, 137–149.

    Article  CAS  Google Scholar 

  19. Oefner P. J. and Chiesa C. (1994) Capillary electrophoresis of carbohydrates. Glyco-biology 4, 397–412.

    Article  CAS  Google Scholar 

  20. Honda S., Iwase S., Makino A., and Fujiwara S. (1989) Simultaneous determination of reducing monosaccharides by capillary zone electrophoresis as the borate complexes of N-2-pyridyl-glycamines. Anal. Biochem. 176, 72–77.

    Article  PubMed  CAS  Google Scholar 

  21. Chiesa C. and Horvath C. (1993) Capillary zone electrophoresis of malto-oligosaccharides derivatized with 8-amino-naphtalene-1,3,6-trisulfonic acid. J. Chromatogr. 645, 337–352.

    Article  PubMed  CAS  Google Scholar 

  22. Schwaiger H., Oefner P. J., Huber C., Grill E., and Bonn G. K. (1994) Capillary zone electrophoresis and micellar electrokinetic chromatography of 4-aminobenzonitrile carbohydrate derivatives. Electrophoresis 15, 941–952.

    Article  PubMed  CAS  Google Scholar 

  23. Warren L. (1959) The thiobarbituric assay of sialic acids. J. Biol. Chem. 234, 1971–1975.

    PubMed  CAS  Google Scholar 

  24. Zanetta J. P., Breckenridge W. C., and Vincendon G. (1972) Analysis of monosaccharidesby gas-liquid chromatography of the O-methyl glycosides as trifluoroacetate derivatives. Application to glycoproteins and glycolipids. J. Chromatogr. 69, 291–304.

    Article  PubMed  CAS  Google Scholar 

  25. Chaplin M. F. (1982) A rapid and sensitive method for the analysis of carbohydrate com-ponents in glycoproteins using gas-liquid chromatography. Anal. Biochem. 123, 336–341.

    Article  PubMed  CAS  Google Scholar 

  26. Henri R. J., Blakeney A. B., Harris P. J., and Stone B. A. (1983) Detection of neutral and amino sugars form glycoproteins and polysaccharides as their alditol-acetates. J. Chromatogr. 256, 419–427.

    Article  Google Scholar 

  27. Takemoto H., Hase S., and Ikenaka T. (1985) Microquantitative analysis of neutral and amino sugars as fluorescent pyridylamino-derivatives by high performance liquid chromatography. Anal. Biochem. 145 245–250.

    Article  PubMed  CAS  Google Scholar 

  28. Manzi A. E. and Varki A. (1994) Compositional analysis of glycoproteins in Glyco-biology, A Practical Approach, (Fukuda M., ed.), IRL Press, pp. 27–77.

    Google Scholar 

  29. Karlsson N. G. and Hansson G. C. (1995) Analysis of monosaccharides composition by mucin oligosaccharide-alditols by high performance anion-exchange chromatography. Anal. Biochem. 224, 538–541.

    Article  PubMed  CAS  Google Scholar 

  30. Jackson P. (1994) The analysis of fluorophore labelled glycans by high-resolution poly-acrylamide gel electrophoresis. Anal. Biochem. 216, 243–252.

    Article  PubMed  CAS  Google Scholar 

  31. Jackson P. (1991) Polyacrylamide gel electrophoresis of reducing saccharides labelledwith the fluorophore 2-aminoacridone subpicomolar detection using an imaging system based on a cooled charge-coupled device. Anal. Biochem. 196, 238–244.

    Article  PubMed  CAS  Google Scholar 

  32. Borch R. F., Bernstein M. D., and Durst H. D. (1971) The cyanohydridoborate anion as a selective reducing agent. J. Am. Chem. Soc. 93, 2897–2904.

    Article  CAS  Google Scholar 

  33. Jentoft N. (1985) Analysis of sugars in glycoproteins by high-pressure liquid chromatog-raphy. Anal. Biochem. 148, 424–433.

    Article  PubMed  CAS  Google Scholar 

  34. Gisch D. J. and Pearson J. D. (1988) Determination of monosaccharides in glycoproteins by reverse-phase high performance liquid chromatography on 2. 1 mm narrowbore columns. J. Chromatogr. 443, 299–308.

    Article  PubMed  CAS  Google Scholar 

  35. Golik J., Liu M., Divoni M., Furakawa J., and Nakanishi K. (1983) Characterization of methylglycosides at the pico to nano-gram level. Carbohydr. Res. 118, 135–146.

    Article  CAS  Google Scholar 

  36. White C. A. and Kennedy J. F. (1979) Analysis of derivatives of carbohydrates by high-pressure liquid chromatography. Carbohydr. Res. 76, 1–10.

    Article  CAS  Google Scholar 

  37. Anderson J. M. (1986) Fluorescent hydrazides for high performance liquid chromatography, determination of biological carbonyls. Anal. Biochem. 152, 146–153.

    Article  PubMed  CAS  Google Scholar 

  38. Muramoto K., Goto R., and Kamiya H. (1987) Analysis of reducing sugars as their chro-mophoric hydrazones by high performance liquid chromatography. Anal. Biochem. 162, 435–442.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang R. E., Cao Y. L., and Hearn M. W. (1991) Synthesis and application of fmoc-hydrazine for the quantitative determination of saccharides by reverse-phase high performance liquid chromatography in the low and subpicomole range. Anal. Biochem. 195, 160–167.

    Article  PubMed  CAS  Google Scholar 

  40. Lin J. K. and Wu S. S. (1987) Synthesis of dansyl hydrazine and its use in the chromato-graphic determination of monosaccharides by thin-layer and high performance liquid chromatography. Anal. Biochem. 591, 1320–1326.

    Google Scholar 

  41. Honda S., Akao E., Suzuki S., Okada M., Kakahi K., and Mukamura J. (1989) High performance liquid chromatography of reducing carbohydrates as strongly ultraviolet absorbing and electrochemically sensitive 1-phenyl-3-methyl-5-pyrazolone derivatives. Anal. Biochem. 180, 351–357.

    Article  PubMed  CAS  Google Scholar 

  42. Fu D. and O’Neill R. A (1995) Monosaccharide composition analysis of oligosaccha-rides and glycoproteins by high performance liquid chromatography. Anal. Biochem. 227, 377–384.

    Article  PubMed  CAS  Google Scholar 

  43. Alpenfelsm W. F. (1981) A rapid method for the determination of monosaccharides as their dansyl hydrazones by high performance liquid chromatography. Anal. Biochem. 114, 153–157.

    Article  Google Scholar 

  44. Annumulam K. R. (1994) Quantitative determination of monosaccharides in glycoproteins by high performance liquid chromatography with highly sensitive fluorescence detection. Anal. Biochem. 220, 275–283.

    Article  Google Scholar 

  45. Spiro M. J. and Spiro R. G. (1992) Monosaccharide determination of glycoconjugates by reverse-phase by high performance liquid chromatography of their phenylthiocarbamyl derivatives. Anal. Biochem. 204, 152–157.

    Article  PubMed  CAS  Google Scholar 

  46. Kwon H. and Kim J. (1993) Determination of monosaccharides in glycoproteins by reverse-phase by high performance liquid chromatography. Anal. Biochem. 215, 243–252.

    Article  PubMed  CAS  Google Scholar 

  47. Hernandez L. M., Ballon L., Alvarado E., Gillea-Castro B. L., Burlingame A. L., and Ballon C. E. (1989) A new Saccharomyces cerevisiea mnn Mutant N-linked oligosaccha-ride structure. J. Biol. Chem. 264, 11,849–11,856.

    PubMed  CAS  Google Scholar 

  48. Hemmrich S., Bertozzi C. R., Leffler H., and Rosen S. D. (1994) Identification of the sulfated monosaccharides of GlyCAM-1 an endothelial derived ligand for L-selectin. Biochemistry 33, 4820–4829.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Michalski, JC., Capon, C. (2000). Monosaccharide Composition of Mucins. In: Corfield, A.P. (eds) Glycoprotein Methods and Protocols. Methods in Molecular Biology™, vol 125. Humana Press. https://doi.org/10.1385/1-59259-048-9:159

Download citation

  • DOI: https://doi.org/10.1385/1-59259-048-9:159

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-720-5

  • Online ISBN: 978-1-59259-048-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics