Skip to main content

In Vitro Autoradiographic Localization of Receptor-Stimulated [35S]GTPγS Binding in Brain

  • Protocol
G Protein Methods and Protocols

Part of the book series: Neuromethods ((NM,volume 31))

Abstract

Neurotransmitter receptors contain two main functional components: a ligand binding domain, which specifically recognizes the neurotransmitter, and a signaling component, which translates the binding of the neurotransmitter (or its agonists) into a physiological response. Radioligand binding assays represented a breakthrough in understanding the properties of these receptors in brain at the level of the ligand binding site, and the development of techniques like in vitro autoradiography of receptor binding allowed high-resolution analysis of the neuroanatomical localization of these receptors. However, these methodologies provide no information regarding the signal transduction component of these receptors, and in particular, cannot provide a true picture of the biological activity of receptors and of the efficacy of neurotransmitters and their agonists to produce a biological response. Even more recent methodological developments, like in situ hybridization of receptor mRNA, provide excellent localization of receptor gene expression, but also give little information about receptor coupling to intracellular signaling mechanisms. In order to address this question, techniques must be developed to allow for in vitro localization of receptor-mediated signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asano, T., Pedersen, S. E., Scott, C. W., and Ross, E. M. (1984) Reconstitution of catecholamine-stimulated binding of guanosine 5′-O-(3-thio-triphosphate) to the stimulatory GTP-binding protein of adenylate cyclase. Biochemistry 23, 5460–5467.

    Article  PubMed  CAS  Google Scholar 

  • Birnbaumer, L., Abramowitz, J., and Brown, A. M. (1990) Receptor-effector coupling by G proteins. Biochem. Biophys. Acta 1031, 163–224.

    PubMed  CAS  Google Scholar 

  • Bradford, M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding Anal Bzochem 72, 248–254.

    Article  CAS  Google Scholar 

  • Brandt, D. R. and Ross, E. M. (1986) Catecholamine-stimulated GTPase cycle: multiple sites of regulation by β-adrenergic receptor and Mg2+ studied in reconstituted receptor-Gs vesicles. J. Biol. Chem. 261, 1656–1664.

    PubMed  CAS  Google Scholar 

  • Brown, A. M. and Birnbaumer, L. (1990) Ionic channels and their regulation by G protein subunits. Ann Rev. Physiol 52,197–213.

    Article  CAS  Google Scholar 

  • Cassel, D. and Selinger, Z. (1976) Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim. Biophys. Acta 452, 538–551

    PubMed  CAS  Google Scholar 

  • Cassel, D. and Selinger, Z (1978) Mechanism of adenylate cyclase activation through the β-adrenergic receptor catecholamine-induced displacement of bound GDP by GTP. Proc. Natl. Acad Sci USA 75, 4155–4159.

    Article  PubMed  CAS  Google Scholar 

  • Childers, S. R. (1991) Opioid receptor-coupled second messengers. Life Sci. 48, 1991–2003.

    Article  PubMed  CAS  Google Scholar 

  • Chu, D. C. M., Albin, R L., Young, A B., and Penney, J. B. (1990) Distribution and kinetics of GABA, binding sites m rat central nervous system: a quantitative autoradiographic study Neuroscience 34, 341–357

    Article  PubMed  CAS  Google Scholar 

  • Clapham, D. E. and Neer, E. J. (1993) New roles for G protein βγ-dimers m transmembrane signalling. Nature (Lond) 365, 403–406.

    Article  CAS  Google Scholar 

  • Costa, T, Lang, J, Gless, C., and Herz, A. (1990) Spontaneous association between opioid receptors and GTP-binding proteins in native membranes: specific regulation by antagonists and sodium ions. Mol Pharmacol. 37, 383–394

    PubMed  CAS  Google Scholar 

  • Florio, V. A. and Sternweis, P.C. (1989) Mechanisms of muscarinic receptor action on G0 m reconstituted phospholipid vesicles. J. Biol. Chem 264}, 3909–3

    PubMed  CAS  Google Scholar 

  • Fung, B. K.-K. (1983) Characterization of transducin from bovine retinal rod outer segments I. Separation and reconstitution of the subunits J. Biol. Chem. 258, 10,495–10,502

    PubMed  CAS  Google Scholar 

  • Gierschik, P., Sidiropoulos, D., Steisslinger M., and Jakobs K. H. (1989) Na+ regulation of formyl peptide receptor-mediated signal transduction in HL60 cells. Evidence that the cation prevents activation of the G protein by unoccupied receptors. Eur. J Pharmacol. 172, 481–492.

    Article  PubMed  CAS  Google Scholar 

  • Gierschik, P., Moghtader, R., Straub, C., Dieterich, K., and Jakobs, K. H. (1991) Signal amplification in HL-60 granulocytes: evidence that the chemotactic peptide receptor catalytically activates guanine-nucleotide-binding regulatory proteins in native plasma membranes. Eur J Biochem 197, 725–732.

    Article  PubMed  CAS  Google Scholar 

  • Gilman, A. G. (1987) G Protein: transducers of receptor-generated signals. Ann. Rev. Biochem. 56, 615–649.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, R. R., Snyder, S. H., Kuhar, M. J., and Young, W. S. III. (1980) Differentiation of delta and mu opiate receptor localizations by light microscopic autoradiography. Proc. Natl. Acad Sci. USA 77, 6239–6243.

    Article  PubMed  CAS  Google Scholar 

  • Hepler, J. R., and Gilman, A. G. (1992) G proteins. Trends Biochem. Sci 17, 383–387.

    Article  PubMed  CAS  Google Scholar 

  • Herkenham, M. and Pert, C. B. (1980) In vitro autoradiography of opiate receptors in rat brain suggests loci of “opiatergic” pathways. Proc Natl. Acad. Sci. USA 77, 5532–5536.

    Article  PubMed  CAS  Google Scholar 

  • Herkenham, M. and Pert, C B. (1982) Light microscopic localization of brain opiate receptors: a general autoradiographic method which preserves tissue quality. J. Neurosci. 2, 1129–1149.

    PubMed  CAS  Google Scholar 

  • Herkenham, M., Lynn, A B., Johnson, M. R., Melvin, L. S., de Costa, B. R and Rice, K C (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J. Neurosci. 11, 563–583.

    PubMed  CAS  Google Scholar 

  • Hildebrandt, J D, Sekura, R D., Codina, J., Iyengar, R., Manclark, C R and Birnbaumer, L. (1983) Stimulation and inhibition of adenylyl cyclases mediated by distinct regulatory proteins. Nature (Lond.) 302, 706–709.

    Article  CAS  Google Scholar 

  • Hilf, G, Gierschik, P., and Jakobs, K. H. (1989) Muscarinic acetylcholine receptor-stimulated binding of guanosine 5′-O-(3-thiotriphosphate) to guanine-nucleotide-binding proteins in cardiac membranes Eur. J. Biochem. 186, 725–731.

    Article  PubMed  CAS  Google Scholar 

  • Horstman, D. A., Brandon, S., Wilson, A. L, Guyer, C A., Cragoe, C. A., and Limbird, L. E. (1990) An aspartate conserved among G protein receptors confers allosteric regulation of alpha(2)-adrenergic receptors by sodium. J. Biol. Chem. 265, 21,590–21,595

    PubMed  CAS  Google Scholar 

  • Jansen, E. M., Haycock, D. A., Ward, S. J., and Seybold, V. S. (1992) Distribution of cannabinoid receptors in rat brain determined with aminoalkylindoles. Brain Res. 575, 93–102.

    Article  PubMed  CAS  Google Scholar 

  • Koski, G. and Klee, W. A. (1981) Opiates ihibit adenylate cyclase by stimulation of GTP hydrolysis. Proc. Natl. Acad. Sci USA 78, 4185–4189.

    Article  PubMed  CAS  Google Scholar 

  • Koski, G., Streaty, R. A., and Klee, W. A. (1982) Modulation of sodium-sensitive GTPase by partial opiate agonists J. Biol. Chem. 257, 14,035–14,040.

    PubMed  CAS  Google Scholar 

  • Kuhar, M. J and Yamamura, H. I (1975) Light autoradiographic localisation of cholinergic muscarinic receptors in rat brain by specific binding of a potent antagonist. Nature (Lond.) 253, 560–561

    Article  CAS  Google Scholar 

  • Kurose, H., Katada, T., Haga, T., Haga, K., Ichiyama, A., and Uli, M. (1986) Functional interaction of purified muscarinic receptors with purified inhibitory guanme nucleotide regulatory proteins reconstituted m phospholipid vesicles J. Biol. Chem. 261, 6423–6428.

    PubMed  CAS  Google Scholar 

  • Lazareno, S., Farries, T., and Birdsall, N. J. M (1993) Pharmacological characterization of guanine nucleotide exchange reactions in membranes from CHO cells stably transfected with human muscarinic receptors M1–M4. Life Sci 52, 449–456

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen, A, Fuss, M., Vogt, H., and Schwabe, U (1993) Measurement of guanine nucleotide-binding protein activation by A1 adenosine receptor agonists in bovine brain membranes. stimulation of guanosine-5′-O-(3-[35S]thio)triphosphate binding Mol Pharmacol 44, 115–123.

    PubMed  CAS  Google Scholar 

  • Meunier, J-C., Mollereau, C., Toll, L, Suaudeau, C, Moisand, C, Alvinerie, P, Butour, J.-L., Guillemot, J.-C, Ferrara, P, Monsarrat, B., et al. (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL, receptor. Nature (Lond.) 377, 532–535.

    Article  CAS  Google Scholar 

  • Pert, C B. and Snyder, S. H. (1973) Opiate receptor demonstration in nervous tissue. Science 179, 1011–1014.

    Article  PubMed  CAS  Google Scholar 

  • Pert, C. B. and Snyder, S. H. (1974) Opiate receptor binding of agonists and antagonists affected differentially by sodium Mol. Pharmacol. 10, 868–879.

    CAS  Google Scholar 

  • Pert, C. B., Kuhar, M. J., and Snyder, S H. (1975) Autoradiographic localization of the opiate receptor in rat brain Life Sci 16, 1849–1854.

    Article  PubMed  CAS  Google Scholar 

  • Reinscheid, R. K., Nothacker, H.-P., Bourson, A., Ardati, A, Henningsen, R. A., Bunzow, J. R., Grandy, D. K., Langen, H, Monsma, F. J. and Civelli, O. (1995) Orphanin, F. Q. A neuropeptide that activates an opioidlike G protein-coupled receptor Science 270, 792–794.

    Article  PubMed  CAS  Google Scholar 

  • Selley, D. E. and Bidlack, J. M. (1992) Effects of β-endorphin on Mu and Delta opioid receptor-coupled G protein activity low-Km GTPase studies. J. Pharmacol. Exp. Ther. 263, 99–104.

    PubMed  CAS  Google Scholar 

  • Selley, D. E, Breivogel, C. S., and Childers, S. R. (1993) Modification of opioid receptor-G protein function by low pH pretreatment of membranes from NG108-15 cells increase in opioid agonist efficacy by decreased inactivation of G Protein. Mol. Pharmacol. 44, 731–741.

    PubMed  CAS  Google Scholar 

  • Sim, L J, Selley, D. E., and Childers, S R. (1995) In vitro autoradiography of receptor-activated G Protein in rat brain by agonist-stimulated guanylyl 5′-[γ-[35S]thio]-triphosphate binding. Proc. Natl. Acad. Sci. USA 92, 7242–7246.

    Article  PubMed  CAS  Google Scholar 

  • Sim, L. J, Xiao R., and Childers, S. R. (1996a) Identification of opioid receptor-like (ORLl) peptide-stimulated [35S]GTPγ S binding in rat brain NeuroReport, 7, 729–733

    Article  PubMed  CAS  Google Scholar 

  • Sim, L. J., Xiao, R, and Childers, S. R. (1996b) Differences in G protein activation by mu and delta opioid, and cannabinoid, receptors in rat striation. Eur. J. Pharmacol 307, 97–105.

    Article  PubMed  CAS  Google Scholar 

  • Sternweis, P. C and Robishaw, J. D (1984) Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain J Biol Chem. 259, 13,806–13,813

    PubMed  CAS  Google Scholar 

  • Tang, W.-J. and Gilman, A. G. (1992) Adenylyl cyclases. Cell 70, 869–872

    Article  PubMed  CAS  Google Scholar 

  • Taussig, R., Tang W.-J., Hepler, J R, and Gilman, A G (1994) Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases. J. Biol. Chem. 1994, 6093–6100.

    Google Scholar 

  • Tian, W.-N., Duzic, E., Lanier, S M., and Deth, R. C. (1994) Determinants of α2-adrenergic receptor activation of G Proteins: evidence for a precoupled receptor/G protein state. Mol Pharmacol. 45, 524–531.

    PubMed  CAS  Google Scholar 

  • Traynor, J. R and Nahorski, S. R. (1995) Modulation by μ-opioid agonists of guanosine-5′-O-(3-[35S]thio)triphosphate binding to membranes from human neuroblastoma SH-SY5Y cells. Mol. Pharmacol. 47, 848–854.

    PubMed  CAS  Google Scholar 

  • Tsai, B. S. and Lefkowitz, R. J. (1978) Agonist-specific effects of monovalent and divalent cations on adenylate cyclase-coupled alpha adrenergic receptors in rabbit platelets. Mol. Pharmacol. 14, 540.

    PubMed  CAS  Google Scholar 

  • Wieland, T. and Jakobs, K. H. (1994) Measurement of receptor-stimulated guanosine 5′-O-(γ-thlo)trrphosphate binding by G Proteins Methods Enzymol. 237, 3–13.

    Article  CAS  Google Scholar 

  • Young, W S. and Kuhar, M. J. (1979) A new method for receptor autoradiography: [3H]Opiord receptors in rat brain. Brain Res. 179, 255–270.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc

About this protocol

Cite this protocol

Sim, L.J., Selley, D.E., Childers, S.R. (1997). In Vitro Autoradiographic Localization of Receptor-Stimulated [35S]GTPγS Binding in Brain. In: Mishra, R.K., Baker, G.B., Boulton, A.A. (eds) G Protein Methods and Protocols. Neuromethods, vol 31. Humana Press. https://doi.org/10.1385/0-89603-490-9:1

Download citation

  • DOI: https://doi.org/10.1385/0-89603-490-9:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-490-7

  • Online ISBN: 978-1-59259-636-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics