Skip to main content

Transformation of the Cereals Using Agrobacterium

  • Protocol
Recombinant Gene Expression Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 62))

  • 1543 Accesses

Abstract

The evolved gene transfer mechanism of Agrobacterium tumefaciens is the transformation method of choice. Its use is simple, gene transfers are precise and result in permanent genetic changes. The range of species known to be infected by this organism has grown from an original group of dicot plants known to produce galls after infection (1), to include many other species that exhibit little or no gall formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeCleene, M. (1979) The susceptibility of monocotyledons to Agrobacterium tumefaciens. Phytopathol Z. 113, 81–89.

    Article  Google Scholar 

  2. Potrykus, I. (1990) Gene transfer to cereals, an assessment. Bio/Technologyogy 8, 535–542.

    Article  CAS  Google Scholar 

  3. Chilton, M.-D. (1993) Progress on Agrobacterium transformation of cereals. Proc. Natl. Acad. Sci. USA 90, 3549–3553.

    Article  Google Scholar 

  4. Klein, T., Wolf, E., Wu, R., and Stanford, J. (1987) High velocity microprojectiles for delivering nucleic acids into living cells. Nature 327, 70–73.

    Article  CAS  Google Scholar 

  5. Fromm, M., Morrish, F., Armstrong, C., Williams, R., Thomas, J., and Klein, T. (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8, 833–839.

    Article  PubMed  CAS  Google Scholar 

  6. Gordon-Kamm, W., Spencer, M., Mangano, M., Adams, T., Daines, R., Start, G., O’Brien, J., Chambers, S., Adams, W., Willetts, N., Rice, T., Mackey, C., Krueger, R., Kausch, A., and Lemaux, P. (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2, 603–618.

    Article  PubMed  CAS  Google Scholar 

  7. Luo, Z.-X. and Wu, R. (1989) A simple method for the transformation of rice via the pollen-tube pathway. Plant Mol. Biol. Rep. 7, 69–77.

    Article  Google Scholar 

  8. Christou, P., Ford, T., and Kofron, M. (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9, 957–962.

    Article  Google Scholar 

  9. Vasil, V., Castillo, A., Fromme, M., and Vasil, I. (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10, 667–678.

    Article  CAS  Google Scholar 

  10. Weeks, J., Anderson, O., and Blechl, A. (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 102, 1077–1084.

    PubMed  CAS  Google Scholar 

  11. Lemaux, P., Wan, Y., Bregitzer, P., Halbert, S., Waytt, S., Cho, M.-J., Marx, G., and Buchanan, B. (1995) Molecular breeding of barley. Plant Genome III, San Diego CA, Jan 18, 1995, 142.

    Google Scholar 

  12. Li, R., Stelly, D., and Trolinder, N. (1989) Genome 32, 1128–1134.

    Google Scholar 

  13. Hirochika, H. (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J. 12, 2521–2528.

    PubMed  CAS  Google Scholar 

  14. Graves, A. and Goldman, S. (1986) The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol. Biol. 43, 50.

    Google Scholar 

  15. Grimsley, N., Hohn, T., Davis, J., and Hohn, B. (1987) Agrobacterium mediated delivery of infectious maize streak virus into maize plants. Nature 325, 177–179.

    Article  CAS  Google Scholar 

  16. Schlappi, M. and Hohn, B. (1992) Competence of immature maize embryos for Agrobacterium-mediated gene transfer. Plant Cell 4, 7–16.

    Article  PubMed  Google Scholar 

  17. Gould, J., Devey, M., Hasegawa, O., Uhan, E., Peterson, G., and Smith, R. (1991) Transformation of Zea mays L., using Agrobacterium tumefaciens and the shoot apex. Plant Physiol. 95, 424–426.

    Article  Google Scholar 

  18. Hansen, G., Das, A., and Chilton, M.-D. (1994) Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium to tobacco and corn. PNAS USA 91, 7603–7607.

    Article  PubMed  CAS  Google Scholar 

  19. Ishida, Y., Satio, H., Otha, S., Hiei, Y., and Komari, T. (1995) Agrobacterium-mediated transformation of maize. Plant Physiol. Suppl. 108: 152, (Suppl) 801.

    Google Scholar 

  20. Rainieri, D., Bottino, P., Gordon, M., and Nester, E. (1990) Agrobacterium transformation of rice (Oryza sativa L.). Bio/Technology 8, 33–38.

    Article  Google Scholar 

  21. Chan, M.-T., Chang, H.-H., Ho, S.-L., Tong, W.-F., and Yu, S.-M. (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric alpha-amylase promoter/beta-glucuronidase gene. Plant Mol. Biol. 22, 491–506.

    Article  PubMed  CAS  Google Scholar 

  22. Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994) Effecient transfromation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–275.

    Article  PubMed  CAS  Google Scholar 

  23. Ulian, E., Smith, R., Gould, J., and McKnight, T. (1988) Transformation of plants via the shoot apex. Vitro, Cell Devl. Biol. 24, 951–954.

    Article  Google Scholar 

  24. Gould, J., Devey, M., Hasegawa, O., Ko, T.-S., Villalon, D., Rigoldi, M., Ulian, E., Peterson, G., and Smith, R. (1991) Transformation of the Graminae by Agrobacterium tumefaciens. ISPMB, Tucson AZ.

    Google Scholar 

  25. Gould, J., Devey, M., Ko, T.-S., Peterson, G., Hasegawa, O., and Smith, R. (1992) Transformation of Graminae using Agrobacterium tumefaciens. J. Cell Biochem. Keystone Symposia on Molecular & Cellular Biology, Supplement 16F, p. 207.

    Google Scholar 

  26. Hood, E., Helmer, G., and Fraley, R. (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTBo542 outside of T-DNA. J. Bact. 168, 1291–1301.

    PubMed  CAS  Google Scholar 

  27. Li, X.-Q., Lin, C.-N., Ritchie, S., Peng, Y., Gelvin, S., and Hodges, T. (1992) Factors influencing Agrobacterium-mediated transient expression of gusA in rice. Plant Mol. Biol. 20, 1037–1048.

    Article  PubMed  CAS  Google Scholar 

  28. Hood, E., Jen, G., Kayes, L., Kramer, J., Fraley, R., and Chilton, M. D. (1990) Restriction endonuclease map of pT1Bo542, a potential T1 plasmid vector for genetic engineering of plants. Bio/Technology. 2, 702–709.

    Article  Google Scholar 

  29. Gallagher, S. (1992) GUS Protocols Academic, New York, p. 221.

    Google Scholar 

  30. McElroy, D., Chamberlain, D., Moon, E., and Wilson, K. (1995) Development of gusA reporter gene constructions for cereal transformation. Mol. Breeding 1, 27–37.

    Article  CAS  Google Scholar 

  31. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth of and bioassays with tobacco tissue cultures. Physiol. Plant 15, 473–497.

    Article  CAS  Google Scholar 

  32. Sambrook, J., Frisch, E., and Maniatis, T. (1989) Molecular Cloning A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, Appendix, A.1–A.6.

    Google Scholar 

  33. Shabde, M. and Murashige, T. (1977) Hormonal requirements of excised Dianthus caryophyllus L. Shoot apical meristem in vitro. Amer. J. Bot. 64, 443–448.

    Article  CAS  Google Scholar 

  34. Irish, E. and Nelson, T. (1988) Development of maize plants from cultured shoot apices. Planta 175, 9–12.

    Article  Google Scholar 

  35. Dellaporta, S., Wood, J. and Hicks J. (1985) Maize DNA miniprep, in Molecular Biology of Plants (Malmberg, R., et. al., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 36–37.

    Google Scholar 

  36. Devey, M. and Hart, G. (1993) Chromasomal localization of intergenomic RFPL loci in hexaploid wheat. Genome 36, 913–918.

    Article  PubMed  CAS  Google Scholar 

  37. Veluthambi, K., Krishnan, M., Gould, J. H., Smith, R. H., and Gelvin, S. B. (1989) Opines stimulate induction of the vir genes of Agrobacterium tumefaciens Ti plasmid. J. Bact. 171, 3696–3703.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Gould, J. (1997). Transformation of the Cereals Using Agrobacterium . In: Tuan, R.S. (eds) Recombinant Gene Expression Protocols. Methods in Molecular Biology, vol 62. Humana Press. https://doi.org/10.1385/0-89603-480-1:491

Download citation

  • DOI: https://doi.org/10.1385/0-89603-480-1:491

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-480-8

  • Online ISBN: 978-1-59259-548-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics