Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 62))

  • 1805 Accesses

Abstract

The yeast Saccharomyces cerevisiae provides an excellent system to study genes of eukaryotes because it has been extensively characterized genetically and because the molecular mechanisms governing many cellular processes in yeasts are conserved in other organisms. For example, yeasts provide a powerful system for the study of mammalian proteins. However, to study the function of a cDNA encoding a heterologous protein in yeast, the cDNA needs to be cloned in an appropriate vector that permits expression, correct localization, and the posttranslational modification of the product. In this chapter we describe the yeast vectors available for analysis of a new gene and its product and provide two recommended transformation protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lundblad, V. (1991) Yeast vector in Protocols in Molecular Biology (Ausubel, F. D., Brent, R. G., Kingston, R. E., Moore, D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.), Wiley, New York, pp. 13.4.1.

    Google Scholar 

  2. Zealey, G. R., Goodey, A. R., Piggot, J. R., Watson, M. E., Cafferkey, R. C., Doel, S. M., Carter, B. L. A., and Wheals, A. E. (1988) Amplification of plasmid copy number by thymidine kinase expression in Saccharomyces cerevisiae. Mol. Gen. Genet. 211, 155–159.

    Article  PubMed  CAS  Google Scholar 

  3. Henderson, R. C. A., Cox, B. S., and Tubb, R. (1985) Transformation of brewing yeasts with a plasmid containing the gene for copper resistance. Curr. Genet. 9, 133–138.

    Article  CAS  Google Scholar 

  4. Mortimer, R. K., Schild, C. R., Cantopolou, C. R., and Kans, J. A. (1989) Genetic map of Saccharomyces cerevisiae. Edition 10 Yeast 5, 321–329.

    Article  PubMed  CAS  Google Scholar 

  5. Gritz, L. and Davies, J. (1983) Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in E. coli and Saccharomyces cerevisiae. Gene 25, 179–185.

    Article  PubMed  CAS  Google Scholar 

  6. Rine, J., Hansen, W., Hardeman, E., and Davis, R. W. (1983) Targeted selection of recombinant clones through gene dosage effects. Proc. Natl. Acad. Sci. USA 80, 6750–6754.

    Article  PubMed  CAS  Google Scholar 

  7. Brake, A. J. (1990) Alpha-factor leader-directed secretion of heterologous proteins from yeast. Methods Enzymol. 185, 408–421.

    Article  PubMed  CAS  Google Scholar 

  8. Hadfield, C., Cashmore, A. M., and Meacock, P. A. (1986) An efficient chloramphenicol-resistance marker for Saccharomyces cerevisiae. Gene 45, 149–155.

    Article  PubMed  CAS  Google Scholar 

  9. Sikorski, R. and Hieter, P. (1989) A system of shuttle vectors and host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27.

    PubMed  CAS  Google Scholar 

  10. Inomata, K., Nishikawa, M., and Yoshida, K. (1994) The Yeast Saccharomyces kluyveri as a recipient eukaryote in transkingdom conjugation: behavior of transmitted plasmids in transconjugants. J. Bacteriol. 176, 4770–4773.

    PubMed  CAS  Google Scholar 

  11. Bender, A. and Pringle, J. (1991) Use of a synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 1295–1305.

    PubMed  CAS  Google Scholar 

  12. Cvrckova, F. and Naysmyt, K. (1993) Yeast G1 cyclins CLN1 and CLN2 and a GAP-like protein have a role in bud formation. EMBO 12, 5277–5286.

    CAS  Google Scholar 

  13. Kranz, J. and Holm, C. (1990) Cloning by function. An alternative approach for identifying yeast homologs of genes from other organisms. Proc. Natl. Acad. Sci. USA 87, 6629–6633.

    Article  PubMed  CAS  Google Scholar 

  14. Mylin, L. M., Hofmann, K. J., Schultz, L. D., and Hopper, J. E. (1990) Regulated GAL4 expression cassette providing controllable and high-level output from high-copy galactose promoters in yeast. Methods Enzymol. 185, 297–308.

    Article  PubMed  CAS  Google Scholar 

  15. Price, V. L., Taylor, W. E., Clevenger, W., Worthington, M., and Young, E. T. (1990) Expression of heterologous proteins in Saccharomyces cerevisiae using the ADH2 promoter. Methods Enzymol. 185, 308–318.

    Article  PubMed  CAS  Google Scholar 

  16. Etcheverry, T. (1990) Induced expression using yeast copper metallothionein promoter. Methods Enzymol. 185, 319–329.

    Article  PubMed  CAS  Google Scholar 

  17. Kingsman, S. M., Cousens, D., Stanway, C. A., Chambers, A., Wilson, M., and Kingsman, A. J. (1990) High efficiency yeast expression vectors based on the promoter of the phosphoglycerate kinase gene. Methods Enzymol. 185, 329–341.

    Article  PubMed  CAS  Google Scholar 

  18. Rosenberg, S., Coit, D., and Tekamp-Olson, P. Glyceraldehyde-3-phosphate dehydrogenase-derived expression cassettes for constitutive synthesis of heterologous proteins. Methods Enzymol. 185, 341–351.

    Google Scholar 

  19. Schena, M. and Yamamoto, K. R. (1988) Mammalian glucocorticoid receptor derivatives enhance transcription in yeast. Science 241, 965–967.

    Article  PubMed  CAS  Google Scholar 

  20. Picard, D., Schena, M., and Yamamoto, K. R. (1990) An inducible expression vector for both fission and budding yeast. Gene 86, 257–261.

    Article  PubMed  CAS  Google Scholar 

  21. Schena, M., Picard, D., and Yamamoto, K. R. (1991) Vectors for constitutive and inducible gene expression in yeast. Methods Enzymol. 194, 389–398.

    Article  PubMed  CAS  Google Scholar 

  22. Chien, C., Bartel, P. L., Sternglanz, R., and Fields, S. (1991) The two hybrid system a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Nutl. Acad. Sci. USA 88, 9578–9582.

    Article  CAS  Google Scholar 

  23. Touchette, N. (1991) New approach detects protein interactions in vivo. J. NIH Res. 3, 44–45.

    Google Scholar 

  24. Fields, S. (1993) The two hybrid system to detect protein-protein interactions. Methods 5, 116–124.

    Article  CAS  Google Scholar 

  25. Finely, R. L. and Brent, R. G. Interaction trap cloning with yeast, in DNA Cloning-Expression System: A Practical Approach (Glover, D. and Hames, B. D., eds.), Oxford University Press, Oxford, England, in press.

    Google Scholar 

  26. Burke, D. T., Carle, G. F., and Olson, M. V. (1987) Cloning of a large segment of exogenous DNA in to yeast by means of artificial chromosones vectors. Science 236, 806–812.

    Article  PubMed  CAS  Google Scholar 

  27. Burke, D. T. and Olson, M. V. (1991) Preparation of clone libraries in yeast artificial chromosomes. Methods Enzymol. 194, 251–270.

    Article  PubMed  CAS  Google Scholar 

  28. Coulson, A., Kozono, Y., Lutterbach, B., Shownkeen, R., Sulston, J., and Watersion, R. (1991) YACs and the C. elegans genome. Bioessays 13, 3–417.

    Article  Google Scholar 

  29. Little, R. D., Porta, G., Carle, G. F., Schlessinger, D., and D’Urso, M. (1989) Yeast artificial chromosones with 200-to 800-kilobase inserts of human DNA containing HLA, V kappa, 5s and Xq24-Xq28 sequences. Proc. Natl. Acad. Sci. USA 85, 98–1602.

    Google Scholar 

  30. Brownstein, B. H., Silverman, G. A., Little, R. D., Burke, D. T., Korsmeyer, S. J., Schlessinger, D., and Olson, M. V. (1989) Isolation of single-copy human genes from a library of yeast artificial chromosome clones. Science 244, 348–1351.

    Article  Google Scholar 

  31. Hahnenbeger, K. M., Baum, M. P., Polizzi, D. M., Carbon, J., and Clarke, L. (1989) Construction of functional artificial minichromosones in the fission yeast Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 86, 577–581.

    Article  Google Scholar 

  32. Jakobovits, A. (1994) Humanizing the mouse genome. Curr. Biol. 4, 761–763.

    Article  PubMed  CAS  Google Scholar 

  33. Kouprina, N., Eldarov, M., Moyzis, R., Resnick, M., and Larionov, V. (1994) A model system to assess the integrity of mammalian YACs during transformation and propagation in yeast. Genomics 21, 7–17.

    Article  PubMed  CAS  Google Scholar 

  34. Sleister, H. M., Mills, K. A., Blackwell, S. E., Killany, A. M., Murray, J. C., and Malone, R. E. (1992) Construction of a human chromosome 4 YAC pool and analysis of artificial chromosome stability. Nucleic Acids Res. 20, 3419–3425.

    Article  PubMed  CAS  Google Scholar 

  35. Heinemann, J. A. (1991) Genetics of gene transfer between species. Trend. Genet. 7, 181–185.

    CAS  Google Scholar 

  36. Lessl, M. and Lanka, E. (1994) Common mechanisms in bacterial conjugation and Ti-Mediated T-DNA transfer to plant cells. Cell 77, 321–324.

    Article  PubMed  CAS  Google Scholar 

  37. Heinemann, J. A. and Sprague, G. F. Jr. (1989) Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340, 205–209.

    Article  PubMed  CAS  Google Scholar 

  38. Hayman, G. T. and Bolen, P. L. (1993) Movement of shuttle plasmids from Escherichia coli into yeasts other than Saccharomyces cerevisiae using trans-kingdom conjugation. Plasmid 30, 251–257.

    Article  PubMed  CAS  Google Scholar 

  39. Nishikawa, M., Suzuki, K., and Yoshida, K. (1990) Structural and functional stability of IncP plasmids during stepwise transmission by trans-kingdom mating. Promiscuous conjugation of Escherichia coli and Saccharomyces cerevisiae. Jpn. J. Genet 65, 323–334.

    Article  PubMed  CAS  Google Scholar 

  40. Heinemann, J. A. and Sprague, G. F. Jr. (1991) Transmission of plasmid DNA to yeast by conjugation with bacteria. Methods Enzymol. 194, 187–195.

    Article  PubMed  CAS  Google Scholar 

  41. Gurante, L. (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101, 181–191.

    Article  Google Scholar 

  42. Camonis, J. H., Cassan, M., and Roussel, J.-P. (1990) Of mice and yeast versatile vectors which permit gene expression in both budding yeast and higher eukaryotic cells. Gene 86, 263–268.

    Article  PubMed  CAS  Google Scholar 

  43. Park, E. C., Finely, D., and Szostak, J. W. (1992) A strategy for the generation of conditional mutations by protein destabilization. Proc. Natl. Acad. Sci. USA 89, 1249–1252.

    Article  PubMed  CAS  Google Scholar 

  44. Kolodziej, P. A., and Young, R. A. (1991) Epitope tagging and protein surveillance. Methods Enzymol. 194, 508–519.

    Article  PubMed  CAS  Google Scholar 

  45. Pringle, J. R., Adams, A. E. M., Drubin, D. G., and Haarer, B. K. (1991) Immunofluorescence methods for yeast. Methods Enzymol. 194, 565–602.

    Article  PubMed  CAS  Google Scholar 

  46. Clark, M. (1991) Immunogold labeling of yeast ultrathin sections. Methods Enzymol. 194, 608–626.

    Article  PubMed  CAS  Google Scholar 

  47. Cullin, C. and Minvielle-Sebastia, L. (1994) Multipurpose vectors designed for the fast generation of N-or C-terminal epitope-tagged proteins. Yeast 10, 105–112.

    Article  PubMed  CAS  Google Scholar 

  48. Schiestl, R. H., Manivasakam, P., Woods, R. A., and Gietz, R. D. (1993) Introducing DNA into yeast by transformation. Methods 5, 79–85.

    Article  CAS  Google Scholar 

  49. Manivasakam, P., and Schiestl, R. H. (1993) High efficiency transformation of Saccharomyces cerevisiae by electroporation. Nucleic Acids Res. 21, 4414–4415.

    Article  PubMed  CAS  Google Scholar 

  50. Rose, M. D., Winston, F., and Hieter, P. (1990) Methods in Yeast Genetics—A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  51. Brzobohaty, B. and Kovac, L. (1986) Factors enhancing genetic transformation of intact yeast cells modify cell walls porosity. J. Gen. Microbiol. 132, 3089–3093.

    PubMed  CAS  Google Scholar 

  52. Gietz, R. D., Weinberg, O., and Woods, R. A. (1992) Ultra high efficiency yeast transformation using the LiAc/ssDNA/PEG method. Yeast 8, S259.

    Google Scholar 

  53. Sherman, F. (1991) Getting started with yeast. Methods Enzymol. 194, 3–21.

    Article  PubMed  CAS  Google Scholar 

  54. Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H. (1982) Gene transfer into mouse loyoma cells by electroporation in a high electrical field. EMBO 1, 841–845.

    CAS  Google Scholar 

  55. Dohmen, R. J., Srasser, A. W. M., Honer, C. B., and Hollenberg, C. P. (1991) An efficient transformation procedure enabling long term storage of competent cells of various genera. Yeast 7, 691–692.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Singh, K.K., Heinemann, J.A. (1997). Yeast Plasmids. In: Tuan, R.S. (eds) Recombinant Gene Expression Protocols. Methods in Molecular Biology, vol 62. Humana Press. https://doi.org/10.1385/0-89603-480-1:113

Download citation

  • DOI: https://doi.org/10.1385/0-89603-480-1:113

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-480-8

  • Online ISBN: 978-1-59259-548-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics