Skip to main content

Gene Replacement in Mycobacterium smegmatis Using a Dominant Negative Selectable Marker

  • Protocol
Mycobacteria Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 101))

Abstract

The process of homologous recombination IS essential to all living organisms. It is important for the generation of genetic diversity, the maintenance of genomic integrity, and the proper segregation of chromosomes. At least 25 gene products (RecA, helicases, nucleases, ligases, single-strand binding protein, etc.) are involved in the process of homologous recombination. Homologous recombination can occur at any site in the chromosome between homologous, but not necessarily identical, DNA duplexes. The first step in homologous recombination involves breaking of the DNA double helices (single- or double-stranded break), followed by pairing of homologous strands, which results in heteroduplex formation, branch migration, and finally resolution of the intermediate by cleavage and rejoining (1). Homologous recombination has to be distinguished first from the process of site-specific recombination, in which the two parental strands pair at sites of very limited homology (e.g. site-specific integration of phage λ or mycobacteriophage L5 [2), and second from illegitimate recombination. Illegitimate recombination, which uses neither extensive sequence homology nor specific sites, is a process that in most bacteria occurs at a low frequency. Illegitimate recombination however, seems to be the predominant type of integration of foreign DNA m Mycobacterium tuberculosis complex (e.g., Mycobacterium tuberculosis or Mycobacterium bovis BCG [3). It has been hypothesized that this phenomenon might be owing to the unusual structure of the recA gene in M tuberculosis, which is interrupted by an intern (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kowalczykowski, S C, Dixon, D. A., Eggleston, A K., Lauder, S D, and Rehrauer, W M. (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58, 401–465

    CAS  Google Scholar 

  2. Lee, M. H., Pascopella, L., Jacobs, W. R., and Hatfull, G. F. (1991) Site-specificintegration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guerin. Proc Natl Acad. Sci. USA 88, 3111–3115.

    Article  PubMed  CAS  Google Scholar 

  3. Kalpana, G. V., Bloom, B. R., and Jacobs, W. R. (1991) Insertional mutagenesis and illegitimate recombination in mycobacteria Proc Natl. Acad. Sci USA 88, 5433–5437.

    Article  PubMed  CAS  Google Scholar 

  4. Davis, E. O., Sedgwick, S G., and Colston, M. J. (1991) Novel structure of the recA locus of Mycobacterium tuberculosis implies processing of gene product. J Bacteriol 173, 5653–5662

    PubMed  CAS  Google Scholar 

  5. Davis, E. O., Jenner, P. J, Brooks, P. C., Colston, M. J., and Sedgwick, S. G. (1992) Protein splicing in the maturation of M. tuberculosis RecA protein. a mechanism for tolerating a novel class of intervening sequence. Cell 71, 201–210.

    Article  PubMed  CAS  Google Scholar 

  6. Kumar, R. A., Vase, M. B., Chandra, N R, Vijayan, M, and Nuniyappa, K (1996) Functional characterisistics of the precursor and spliced forms of RecA protein of Mycobacterium tuberculosis. Biochemistry 35, 1793–1802.

    Article  PubMed  CAS  Google Scholar 

  7. Falkow, S (1988) Molecular Koch’s postulates applied to microbial pathogenicity. Rev infect Dis 10(Suppl. 2), S274–276.

    PubMed  Google Scholar 

  8. Husson, R. N., Bradford, E J., and Young, R. A. (1990) Gene replacement and expression of foreign DNA in mycobacteria. J. Bacterial. 172, 519–524.

    CAS  Google Scholar 

  9. Sander, P., Meter, A, and Böttger, E. C. (1995) rpsL +: a dominant selectable marker for gene replacement in mycobacteria. Mol. Microbiol 16, 991–1000

    Article  PubMed  CAS  Google Scholar 

  10. Pelicic, V., Reyrat, J, and Gicquel, B (1996) Generation of unmarked mutation in mycobacteria using sucrose counterselectable suicide vectors. Mol Microbiol 20, 919–925.

    Article  PubMed  CAS  Google Scholar 

  11. Sander, P, Prammananan, T., and Bottger, E. C (1996) Introducing mutations into a chromosomal rRNA gene using a geneticall y modifed eubacterial host with a single rRNA operon. Mol Microbiol. 22, 841–848

    Article  PubMed  CAS  Google Scholar 

  12. Snapper, S. B., Melton, R. E., Mustafa, S., Kieser, T, and Jacobs, W R (1990) Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol. Microbiol. 4, 1911–1919

    Article  PubMed  CAS  Google Scholar 

  13. Lydiate, D. J, Ashby, A M, Henderson, D J, Kieser, H. M., and Hopwood, D. A (1989) Physical and genetic characterization of chromosomal copies of the Streptomyces coelicolor mini-circle J Gen Microbiol 135, 941–955.

    CAS  Google Scholar 

  14. Garbe, T. R., Barathi, J., Barnini, S., Zhang, Y, Abou-Zeid, C, Tang, D, MukherJee, R, and Young, D B. (1994) Transformation of mycobacterial species using hygromycin resistance as selectable marker Microbiology 140, 133–138

    Article  PubMed  CAS  Google Scholar 

  15. Paget, E and Davies, J (1996) Apramycin resistance as a selective marker for gene transfer in mycobacteria J Bacteriol 178, 6357–6360

    PubMed  CAS  Google Scholar 

  16. Pelicic, V, Reyrat, J., and Gicquel, B (1996) Expression of the Bacillus subtilis sacB gen confers sucrose sensitivtty on mycobacterta J Bacteriol 178, 1197–1199

    PubMed  CAS  Google Scholar 

  17. Stover, C. K., de la Cruz, V. F., Fuerst, T R, Burlein, J E, Benson, L. A., Bennett,L. T., Bansal, G P, Young, J. F., Lee, M H., Hatfull, G. F, Snapper, S. B, Barletta, R. G., Jacobs, W. R., and Bloom, B. R (1991) New use of BCG for recombinant vaccines Nature 351, 456–460

    Article  PubMed  CAS  Google Scholar 

  18. Jacobs, W. R, Kalpana, G. V, Cirillo, J. D., Pascopella, L., Snapper, S B., Udani, R. A, Jones, W., Barletta, R. G, and Bloom, B. R. (1991) Genetic systems for mycobacteria. Methods Enzymol 204, 537–555

    Article  PubMed  CAS  Google Scholar 

  19. Lederberg, J. (1951) Streptomycin resistance a genetically reccessive mutation. J. Bacteriol 61, 549–550.

    PubMed  CAS  Google Scholar 

  20. Kenney, T. J. and Churchward, G (1996) Genetic analysis of the Mycobacterium smegmatis rpsL promoter. J Bacterial 178, 3564–3571.

    CAS  Google Scholar 

  21. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning A Laboratory Manual, 2nd ed, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Sander, P., BÖttger, E.C. (1998). Gene Replacement in Mycobacterium smegmatis Using a Dominant Negative Selectable Marker. In: Parish, T., Stoker, N.G. (eds) Mycobacteria Protocols. Methods in Molecular Biology™, vol 101. Humana Press. https://doi.org/10.1385/0-89603-471-2:207

Download citation

  • DOI: https://doi.org/10.1385/0-89603-471-2:207

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-471-6

  • Online ISBN: 978-1-59259-576-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics