Skip to main content

Diethylpyrocarbonate and Osmium Tetroxide as Probes for Drug-Induced Changes in DNA Conformation In Vitro

  • Protocol
Drug-DNA Interaction Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 90))

Abstract

Chemical probing of nucleic acids is a powerful and versatile approach to the detection and analysis of the structural and functional complexity of nucleic acids (1). Secondary structures of native DNA and RNA as well as ligandinduced changes in conformation can be probed by the use of a variety of chemical reagents, either in vitro with purified nucleic acids in a reconstituted acellular environment, or directly within the framework of a cell Over the last 10 yr, new advances in technology and new chemical probes have been developed that allow for sensitive, high-resolution detection of variations in DNA and RNA secondary structures. Another aspect of chemical probing experiments concerns their application to investigate the effect of chemotherapeutic drugs on nucleic acid structures. A number of antitumor and antiviral drugs owe their efficacy to their capacity to interact with DNA and subsequently inhibit DNA replication, transcription, and other key steps in the proliferation of the cancer cell or of a virus. Therefore, it is of great importance to understand the mechanism by which drugs interact with DNA and whether or not (and how) these drugs distort the DNA double helix upon binding to it. Although many sophtsticated spectroscopic techniques such as NMR and X-ray crystallography have provided a large body of information about drug-induced structural changes in DNA, these techniques are limited with respect to the size of the DNA molecule that can be studied and have therefore been restricted to experiments employing short oligonucleotides. In addition, it is sometimes necessary to use very high concentrations of both the DNA and the ligand or even to add chemicals in order to stabilize the drug-DNA complex (e.g., dehydrating agents used for X-ray crystallography). The use of chemical probes does not suffer from such constraints so that both short and long DNA molecules can be probed under a variety of conditions in vitro and in vivo. Chemical probing expenments are ideally sulted to detect both local and propagated conformational changes in DNA down to the atomic level

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lilley D. M. J. (1992) Probes of DNA structures. Methods Enzymol 212, 133–139.

    Article  CAS  Google Scholar 

  2. Ehresman C., Baudm F., Mougel M., Romby P., Ebel J. P., and Ehresman B. (1987) Probing the structure of RNAs in solution Nucleic Acids Res 15, 9109–9128.

    Article  Google Scholar 

  3. Wells R. D., Collier D. A., Hanvey J. C., Shimizu M., and Wohlrab F. (1988) The chemistry and biology of unusual DNA structures adopted by oligopurme-oligopyrimidine sequences. FASEB J. 2, 2939–2949

    CAS  Google Scholar 

  4. Nielsen P. E. (1990) Chemical and photochemical probing of DNA complexes. J MOE Recognition 3, 1–25.

    Article  CAS  Google Scholar 

  5. Fox K. R. (1992) Use of enzymatic and chemical probes to determine the effect of drug binding on local DNA structure, in Advances in DNA Sequence Specific Agents, vol. 1, JAI, pp. 167–214.

    CAS  Google Scholar 

  6. Boehm T. and Metha D. (1938) ester der pyrokohlensaure Chem Ber 71, 1797

    Article  Google Scholar 

  7. Milles E. W. (1977) Modification of histidyl residues in proteins by drethylpyrocarbonate Methods Enzymol 47, 43l–442.

    Google Scholar 

  8. Sams C. F. and Mathews K. S. (1988) Diethyl pyrocarbonate reaction with the lactose repressor protein affects both inducer and DNA binding Biochemistry 27, 2277–2281.

    Article  CAS  Google Scholar 

  9. Vincze A., Henderson R. E. L., McDonald F., and Leonard N. J. (1973) Reaction of drethylpyrocarbonate with nucletc actd components. Bases and nucleosides derived from guanme, cytosine, and uracil. J Am Chem Soc 95, 2677–2682

    Article  CAS  Google Scholar 

  10. McCarthy J. G., Williams L. D., and Rich A. (1990) Chemical reactivity of potassium permanganate and diethyl pyrocarbonate with B-DNA specific reactivity with short Atracts Biochemistry 29, 607l–6081

    Article  Google Scholar 

  11. Palecek E. (1992) Probing DNA structure with osium tetroxide complexes in vitro Methods Enzymol 212, 139–155

    Article  CAS  Google Scholar 

  12. Neidle S. and Stuart D. I. (1976) The crystal and molecular structure of an osmium btspyrtdme adduct of thymine Biochem Biophys Acta 418, 226–231

    CAS  Google Scholar 

  13. Cotton R. G. H., Rodrtgues N. R., and Campbell R. D. (1988) Reactivity of cytosine and thymine in single-base-pan intsinatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc Natl. Acad Sci USA 85, 4397–4401

    Article  CAS  Google Scholar 

  14. Debt A. L., Matsumoto K., Santha E., and Agoston D. V. (1994) Guanme specific chemical sequencing of DNA by osmium tetroxide Nucleic Acids Res. 22, 4846–4847

    Article  Google Scholar 

  15. Furlong J. C., Sullivan K. M., Murchre A. I. H., Gough G. W., and Lilley D. M. J. (1989) Localized chemical hyperreactivity in supercoiled DNA evtdence for base unpairing in sequences that induce low-salt cructform extrusion Biochemistry 28, 2009–2017

    Article  CAS  Google Scholar 

  16. Sullivan J. K. and Lebowitz J. (1991) Differential sequence dynamics of homopolymertc and alternating Attracts in a small plasmid DNA Biochemistry 30, 2664–2673

    Article  CAS  Google Scholar 

  17. Mejzlik P. (1994) Complexes between osmium tetraoxide bispyridine and DNA a molecular mechanics study J Biomol Struct Dyn 12, 327–342

    Article  CAS  Google Scholar 

  18. Bailly C., Marchand C., Nguyen C. H., Bisagni E., Garestier T., HeTene C., and Waring M. J. (1995) Localized chemical reactivity in double-stranded DNA associated with the intercalative binding of benzo[e]pyndoindole and benzo[g]pyndoindole triple-helix-stabilizing ligands. Eur J Biochem 232, 66–76.

    Article  CAS  Google Scholar 

  19. Sambrook J., Fritsch E. F., and Maniatis T. (1982) Molecular Cloning, A laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  20. McCarthy J. G., Frederick C. A., and Nrcolas A. (1993) A structural analysis of the bent kinetoplast DNA from Crithidia fasciculata by high resolution chemical probing Nucleic Acids Res 21, 3309–3317.

    Article  CAS  Google Scholar 

  21. Htun H. and Johnston B. H. (1992) Mapping adducts of DNA structural probes using transcription and pnmer extension approaches Methods Enzymol. 212, 272–294.

    Article  CAS  Google Scholar 

  22. McHugh P. J. and Knowland J. (1995) Novel reagents for chemical cleavage at abasrc sues and UV photoproducts in DNA. Nucleic Acids Res 23, 1664–1670.

    Article  CAS  Google Scholar 

  23. Hengen P. N. (1995) Cycle sequencing through GC-rich regions. Trends Biochem. SCi. 21, 33,34

    Google Scholar 

  24. Mergny J. L., Duval-Valentin G., Nguyen C. H., Perrouault L., Faucon B., Rougée M., Montenay-Garestrer T., Btsagni E., and HeTene C. (1992) Triple helix-specific ligands Science 256, 168l–1684.

    Article  Google Scholar 

  25. Marchand C., Barlly C., Nguyen C. H., Bisagni E., Garestier T., HeTene C., and Waring M. J. (1996) Stabilisation of triple helical DNA by a benzopyridoquinoxaline intercalator Biochemistry 35, 5022–5032.

    Article  CAS  Google Scholar 

  26. Waring M. J. and Wakelm L. P. G. (1974) Echinomycin: a bifunctional intercalating antibiotic. Nature 252, 653–657.

    Article  CAS  Google Scholar 

  27. Low C. M. L., Drew H. R., and Waring M. J. (1984) Sequence-specific binding of echmomycin to DNA. evidence for conformational changes affecting flanking sequences Nucleic Acids Res. 12, 48654877

    Article  Google Scholar 

  28. Van Dyke M. W. and Dervan P. B. (1984) Echinomycin binding sites on DNA. Science 225, 1122–1127

    Article  Google Scholar 

  29. Marchand C., Bailly C., McLean M. J., Moroney S., and Waring M. J. (1992) The 2-amino group of guanine is absolutely required for specific binding of the anti-cancer antibiotic echinomycin to DNA. Nucleic Acids Res 21, 5601–5606.

    Article  Google Scholar 

  30. Bailly C. and Waring M. J. (1993) Footprinting studies on the sequence-selective binding of tilorone to DNA. Antwzral Chem Chemother. 4, 113–126.

    Article  CAS  Google Scholar 

  31. Barlly C. and Waring M. J. (1995) Transferring the purine 2-amino group from guamnes to ademnes in DNA changes the sequence-specific binding of antibioics. Nucleic Acids Res. 23, 885–892.

    Google Scholar 

  32. Bailly C., Gentle D., Hamy F., Purcell M., and Warnig M. J. (1994) Localized chemical reactivity in DNA associated with the sequence-specific bisintercalation of echinomycin. Biochem J 300, 165–173.

    Article  CAS  Google Scholar 

  33. Bailly C., Hamy F., and Waring M. J. (1996) Cooperativity in the binding of echinomycin to DNA fragments containing closely spaced CpG sites Biochemistry 35, 1150–1161

    Article  CAS  Google Scholar 

  34. Evans T. and Elistratradis A. (1986) Sequence-dependent S1 nuclease hypersensitivity of a heteronomous DNA duplex. J Biol Chem 261, 14,771–14,780

    CAS  Google Scholar 

  35. Collier D. A., Griffin J. A., and Wells R. D. (1988) Non-B right-handed DNA conformations of homopurme homopyrimidine sequences in the murine immunoglobulin Cα switch region J Biol Chem. 263, 7397–7405

    CAS  Google Scholar 

  36. Hanvey J. C., Klysrk J., and Wells R. D. (1988) Influence of DNA sequence on the formation of non-B right-handed helices in oligopurine + oligopyrimidine inserts in plasmids. J Biol. Chem. 263, 7386–7396.

    CAS  Google Scholar 

  37. Bernés J., Beltrán R., Casasnovas J. M., and Azonn F. (1989) Structural polymorphism of homopurine-homopymindine sequences: the secondary DNA structure adopted by a d(GA TC)22 sequence in the presence of zinc ions. EMBO J 8, 2087–2094.

    Google Scholar 

  38. Fox K. R. (1990) Long (dA)n (dT)n tracts can form intramolecular triplexes under superhelical stress. Nucleic Acids Res. 18 5387–5391.

    Article  CAS  Google Scholar 

  39. Fox K. R. (1992) Wrapping of genomic polydA polydT tracts around nucleosome core particles. Nucleic Acids Res 20, 1235–1242.

    Article  CAS  Google Scholar 

  40. Panyutin I. G. and Wells R. D. (1992) Nodule DNA in the (GA)37 (CT)37 insert in superhelical plasmids. J Biol. Chem. 267, 5495–5501.

    CAS  Google Scholar 

  41. Martinez-Balbas A. and Azorin F. (1993) The effect of zinc on the secondary structure of d(GA * TC), DNA sequences of different length. a model for the formation of *H-DNA Nucleic Acids Res 21, 2557–2562

    Article  CAS  Google Scholar 

  42. Johnston B. H., (1988) The Sl-sensitive form of d(C-T)n d(A-G)n: chemical evidence for a three-stranded structure in plasmids Science 241, 1800–1804

    Article  CAS  Google Scholar 

  43. Hanvey J. C., Shimizu M., and Wells R. D. (1988) Intramolecular DNA triplexes in supercoiled plasmids Proc Natl Acad Sci USA 85, 6292–6296.

    Article  CAS  Google Scholar 

  44. Hanvey J. C., Shimrzu M., and Wells R. D. (1989) Intramolecular DNA triplexes in supercooled plasmids II. Effect of base composmon and noncentral interruptions on formation and stability. J Biol Chem 264, 5950–5956

    CAS  Google Scholar 

  45. Voloshm O. N., Mirkm S. M., Lyamichev V. I., Belotserkovskn B. P., and Frank-Kamenetskii M. D. (1988) Chemical probing of homopurine-homopyrimidine mirror repeats in supercoiled DNA Nature 333, 475–476

    Article  Google Scholar 

  46. Voloshin O. N., Shlyakhtenko L. S., and Lyubchenko Y. (1989) Localization of melted regtons in supercoiled DNA FEBS Lett 243, 377–380.

    Article  CAS  Google Scholar 

  47. Htun H. and Dahlberg J. E. (1988) Single strands, triple strands, and kinks in H-DNA Science 241, 1791–1796

    Article  CAS  Google Scholar 

  48. Htun H. and Dahlberg J. E. (1989) Topology and formation of triple-stranded H-DNA. Science 243, 1571–1576

    Article  CAS  Google Scholar 

  49. Parniewski P., Galazka G., Walk A., and Klysik J. (1989) Complex structural behavior of oligopurine oligopyrtinidine sequence cloned within the supercoiled plasmid. Nuclerc Acids Res 17, 617–629

    Article  CAS  Google Scholar 

  50. Shimizu M., Hanvey J. C., and Wells R. D. (1989) Intramolecular DNA triplexes in supercoiled plasmids I. Effect of loop size on formation and stabihty J Biol Chem 264, 5944–5949

    CAS  Google Scholar 

  51. Blanchi A., Wells R. D., Heintz N. H., and Caddle M. S. (1990) Sequence near the origin of replication of the DHFR locus of chinese hamster ovary cells adopt left-handed Z-DNA and triplex structures J Biol Chem 265, 21,789–21,796

    Google Scholar 

  52. Bernués J., Beltrán R., Casasnovas J. M., and Azorin F. (1990) DNA-sequence and metal-ton spectficlty of the formation of *H-DNA. Nucleic Acids Res 18, 40674073.

    Article  Google Scholar 

  53. Collier D. A., Mergny J. L., Thuong N. T., and Helene C. (1991) Site-specific intercalation at the triplex-duplex Junction Induces a conformational change which is detectable by hypersensitivity to diethylpyrocarbonate. Nucleic Acids Res 19, 4219–4224.

    Article  CAS  Google Scholar 

  54. Pestov D. G., Dayn A., Siyanova E. Y., George D. L., and Mirkin S.M.( 1991) H-DNA and Z-DNA in the mouse c-Ki-ras promoter. Nucleic Acids Res 19, 6527–6532

    Article  CAS  Google Scholar 

  55. Klysik J. (1992) Cruciform extrission facilitates intramolecular triplex formation between distal oligopurine oligopyrtmidine tracts. long range effects J.Blol Chem. 267, 17,430–17,437

    CAS  Google Scholar 

  56. Hartman D. A., Kuo S. R., Broker T. R., Chow L. T., and Wells R. D. (1992) Intermolecular triplex formation distorts the DNA duplex in the regulatory region of human papillomavnus type-11 J Biol Chem 267, 5488–5494.

    CAS  Google Scholar 

  57. Dayn A., Samadashwily G. M., and Mirkin S. M. (1992) Intramolecular DNA triplexes: unusual sequence requirements and influence on DNA polymerization Proc Natl Acad Sci. USA 89, 11,406–11,410

    Article  CAS  Google Scholar 

  58. Pecinka P., Huertas D., Azorm F., and Palecek E. (1995) Intramolecular TAT triplex in (dA)58.(dT)58. Influence of ions. J Biomol Struct Dyn. 13, 29–46.

    Article  CAS  Google Scholar 

  59. Klysik J., Rippe K., and Jovm T. M. (1990) Reactivity of parallel-stranded DNA to chemical modification reagents. Biochemistry 29, 983l–9839

    Article  Google Scholar 

  60. Klysik J., Rippe K., and Jovin T. M. (1991) Parallel-stranded DNA under topological stress: rearrangement of (dA) (dT)15 to a d(A A T)n triplex. Nucleic Acids Res 19, 7145–7154

    Article  CAS  Google Scholar 

  61. Guo Q., Lu M., and Kallenbach N. R. (1995) Effect of hemimethylation and methylation of adenine on the structure and stability of model DNA duplexes Biochemistry 34, 16,35916,364

    Google Scholar 

  62. McCarthy J. G. and Rich A. (1991) Detection of an unusual distortion in A-tract DNA using KMnO4 effect of temperature and distainycin on the altered conformation Nucleic Acids Res. 19, 342l–3429.

    Article  Google Scholar 

  63. Carrera P. and Azorm F. (1994) Structural characterization of intrinsically curved AT-rich DNA sequences Nucleic Acids Res 22, 367l–3680

    Article  Google Scholar 

  64. Johnston B. H. and Rich A. (1985) Chemical probes of DNA conformation. detection of Z-DNA at nucleotide resolution. Cell 42, 713–724

    Article  CAS  Google Scholar 

  65. Herr W. (1985) Diethyl pyrocarbonate: a chemical probe for secondary structure in negatively supercoiled DNA Proc Natl Acad Sci USA 82, 8009–8013

    Article  CAS  Google Scholar 

  66. Runkel L. and Nordheim A. (1986) Chemical footprinting of the interaction between left-handed Z-DNA and anti-Z-DNA antibodres by diethyl pyrocarbonate carbethoxylation J Mol Biol 189, 487–501

    Article  CAS  Google Scholar 

  67. McLean M. J. and Waring M. J. (1988) Chemical probes reveal no evidence of Hoogsteen base pairing in complexes formed between echmomycin and DNA in solution. J Mol Recognition 1, 138–151

    Article  CAS  Google Scholar 

  68. McLean M. J. and Wells R. D. (1988) The role of DNA sequence in the formation of Z-DNA versus cruciforms in plasmids. J Biol Chem 263, 7370–7377

    CAS  Google Scholar 

  69. Vogt N., Rousseau N., Leng M., and Malfoy B. (1988) A study of the B-Z transition of the AC-rich region of the repeat unit of a satellite DNA from Cebus by means of chemical probes J Biol Chem 263, 11,826–11,832.

    CAS  Google Scholar 

  70. NeJedly K., Klysik J., and Palecek E. (1989) Supercoil-stabihzed left-handed DNA in the plasmid (dA-dT)16 insert formed in the presence of N1 2+ FEBS Lett 243, 313–317.

    Article  CAS  Google Scholar 

  71. Guo Q., Lu M., Shahrestanifar M., Sheardy R. D., and Kallenbach N. R. (1991) Drug binding to a DNA BZ molecule analysis by chemical footprinting. Biochemistry 30, 11,735–11,741

    Article  CAS  Google Scholar 

  72. Johnston B. H. (1992) Generation and detection of Z-DNA. Methods Enzymol 211, 127–158.

    Article  CAS  Google Scholar 

  73. Albert A.-M., Roman A. M., Bouche G., Leng M., and Rahmouni A. R. (1994) Gradual and oriented B-Z transition in the 5−untranscrtbed region of mouse ribosomalDNA J Biol Chem 269, 19,238–19,244.

    CAS  Google Scholar 

  74. Buckle M. and But H. (1989) Fine mapping of DNA single-stranded regions using base-specific chemical probes. study of an open complex formed between RNA polymerase and the lac UV5 promoter. Biochemistry 28, 4388–4396.

    Article  CAS  Google Scholar 

  75. Furlong J. C. and Lilley D. M. J. (1986) Highly selective chemical modification of cruciform loops by drethyl pyrocarbonate. Nucleic Acids Res 14, 3995–4007

    Article  CAS  Google Scholar 

  76. Scholten P. M. and Nordheim A. (1986) Diethyl pyrocarbonate a chemical probe for DNA cruciforms Nucleic Acids Res 14, 3981–3993

    Article  CAS  Google Scholar 

  77. Nadel Y., Wetsman-Shomer P., and Fry M. (1995) The fragile X syndrome single strand d(CGG)n nucleotide repeats readily fold back to form immolecular hanpin structures J Biol Chem 270, 28,970–28,977

    Article  CAS  Google Scholar 

  78. Heuer C. and Hillen W. (1988) Tet repressor-tet operator contacts probed by operator-modification interference studies. J Mol Biol 202, 407–415

    Article  CAS  Google Scholar 

  79. Bateman E. and Paule M. R. (1988) Events during eucaryotic rRNA transcription initiation and elongation conversion from the closed to the open promoter complex requires nucleotide substrates. Mol. Cell Biol. 8, 1940–1946

    Article  CAS  Google Scholar 

  80. Zhong M., Rashes M. S., Marky L. A., and Kallenbach N. R. (1992) T-T base mismatches enhance drug binding at the branch sate rn a four-arm DNA Junction Biochemistry 31, 8064–8071

    Article  CAS  Google Scholar 

  81. Zhong M., Rashes M. S., and Kallenbach N. R. (1993) Effects of T-T base ismatches on three-arm DNA Junctions Biochemistry 32, 6898–6907.

    Article  CAS  Google Scholar 

  82. Zhong M., Rashes M. S., Leontis N. B., and Kallenbach N. R. (1994) Effects of unpaired bases on the conformation and stability of three-arm DNA junctions Biochemistry 33, 3660–3667

    Article  CAS  Google Scholar 

  83. Welch J. B., Duckett D. R., and Lilley D. M. J. (1993) Structures of bulged three-way Junctions Nucleic Aciuds Res 21, 4548–4555

    Article  CAS  Google Scholar 

  84. Friedman T. and Brown D. M. (1978) Base specific reactions useful for sequencing methylene blue sensitized photooxtdation of guanine and osmium tetraoxide modification of thymine Nucleic Acids Res 5, 615–622

    Article  Google Scholar 

  85. VoJtiskova M. and Palecek E. (1987) Unusual protonated structure in the homopurine homopyrimidine tract of supercoiled and linearized plasmids recognized by chemrcal probes. J Biomol Struct Dyn 5, 283–296

    Article  CAS  Google Scholar 

  86. Vojtiskova M., Mirkin S., Lyamichev V., Voloshin O., Frank-Kamenetsku M., and Palecek E. (1988) Chemical probing of the homopurme homopyrimidine tract in supercoiled DNA at single-nucleotide resolution FEBS Lett 234, 295–299

    Article  CAS  Google Scholar 

  87. Palecek E., Rasovska E., and Boublikova P. (1988) Probing of DNA polymorphic structure in the cell with osmium tetroxide Biochem Biophys Res Commun 150, 73l–738.

    Article  Google Scholar 

  88. Karlovsky P., Pecinka P., Vojtiskova M., Makaturova E., and Palecek E. (1990) Protonated triplex in E coli cells as detected by chemical probing FEBS Lett 274, 39–42

    Article  CAS  Google Scholar 

  89. Peleg M., Kopel V., Borowrec J. A., and Manor H. (1995) Formation of DNA triple helices inhibits DNA unwinding by the SV40 large T-antigen helrcase Nucleic Acids Res 23, 1292–1299

    Article  CAS  Google Scholar 

  90. NeJedly K., Kwinkowski M., Galazka G., Klystk J., and Palecek E. (1985) Recognition of the structural distortions at the Junctions between B and Z segments in negatively supercorled DNA by osmium tetroxide J Biomol StructDyn 3, 467–478

    Article  CAS  Google Scholar 

  91. Galazka G., Palecek E., Wells R. D., and Klysik J. (1986) Site-specific OsO4 modification of the B-Z Junctions formed at the (dA-dC)32 region in supercoiled DNA J Biol Chem 261, 7093–7098.

    CAS  Google Scholar 

  92. Palecek E., Boublikova P., and Karlovsky P. (1987) Osmium tetroxide recognized structural distortions at junctions between right-and left-handed DNA in a bacterial cell. Gen Physiol Biophys 6, 593–608

    CAS  Google Scholar 

  93. Palecek E., Boubhkova P., NeJedly K., Galazka G., and Klysik J. (1987) B-Z junction in supercoiled pRW751 DNA contain unpaired bases or non-watson-Circk base pairs J Biomol Struct Dyn 5, 297–306.

    Article  CAS  Google Scholar 

  94. Blaho J. A., Larson J. E., McLean M. J., and Wells R. D. (1988) Multiple DNA secondary structures in perfect Inverted repeat mserts in plasmids J Biol Chem. 263, 14,446–14,455.

    CAS  Google Scholar 

  95. Rahmouni A. R. and Wells R. D. (1989) Stabilization of Z DNA in vlvo by localized supercoiling. Science 246, 358–363.

    Article  CAS  Google Scholar 

  96. Rahmouni A. R. and Wells R. D. (1992) Direct evidence for the effect of transcription on local DNA supercoiling in vivo J Mol Biol 223, 131–144

    Article  CAS  Google Scholar 

  97. Albert A.-C., Leng M., and Rahmouni A. R. (1995) The size of the topological domam modulates the B-Z transition of a (TG)n containing repeat J Biomol Struct Dyn 13, 47–56

    Article  CAS  Google Scholar 

  98. Murchte A. I. H. and Lilley D. M. J. (1992) Retinoblastoma susceptibility genes contain 5′ sequences with a high propensity to form guanme-tetrad structures Nucleic Acids Res 20, 49–53

    Article  Google Scholar 

  99. Lilley D. M. J. and Palecek E. (1984) The supercool-stabilized cruciform of ColE1 is hyperreactive to osmium tetroxide EMBOJ 3, 1187–1192

    CAS  Google Scholar 

  100. Cotton R. G. H. and Campbell R. D. (1989) Chemical reactivity of matched cytosme and thymine bases near mismatched and unmatched bases in a heteroduplex between DNA strands with multiple differences Nucleic Acids Res 17, 4223–4233

    Article  CAS  Google Scholar 

  101. Bhattacharyya A. and Lilley D. M. J. (1989) Single base mismatches in DNA J. Mol Biol 209, 583–597

    Article  CAS  Google Scholar 

  102. Greaves D. R., Patient R. K., and Lilley D. M. J. (1985) Factle cructform formation by an (A-T)34 sequence from a Xenopus globin gene. J, Mol. Biol 185, 46l–478

    Article  Google Scholar 

  103. McClellan J. A., Palecek E., and Ulley D. M. J. (1986) (A-T), tracts embedded in random sequence DNA-formation of a structure which is chemically reactive and torsionally deformable. Nucleic Acids Res 14, 9291–9309.

    Article  CAS  Google Scholar 

  104. McClellan J. A., Boublrkova P., Palecek E., and Lilley D. M. J. (1990) Super-helical torsion in cellular DNA responds directly to environmental and genetic factors. Proc. Natl Acad. Sci USA 87, 8373–8377.

    Article  CAS  Google Scholar 

  105. McClellan J. A. and Lilley D. M. J. (1987) A two-state conformational equihbrium for alternating (A-T)n sequences in negatively supercorled DNA. J. Mol Biol. 197, 707–721.

    Article  CAS  Google Scholar 

  106. Lyamichev V. I., Mirkin S. M., Danilevskaya O. N., Voloshin O. N., Balatskaya S. V., Dobrynm V. N., Filippov S. A., and Frank-Kamenetskii M. D. (1989) An unusual DNA structure detected in a telomeric sequence under super-helical stress and at low pH Nature 339, 634–637

    Article  CAS  Google Scholar 

  107. Palecek E., Boubhkova P., and Nejedly K. (1989) Probing of DNA structure with osmium tetroxide. Effect of ligands Biophys Chem 34, 63–68

    Article  CAS  Google Scholar 

  108. Duckett D. R., Murchie A. I. H., Diekmann S., von Kitzing E., Kemper B., and Lilley D. M. J. (1988) The structure of the Holliday Junction and its resolution Cell 55, 79–89.

    Article  CAS  Google Scholar 

  109. Duckett D. R., Murchie A. I. H., and Lilley D. M. J. (1990) The role of metal ions in the conformation of the four-way DNA Junction. EMBOJ 9, 583–590

    CAS  Google Scholar 

  110. Duckett D. R. and Lilley D. M. J. (1990) The three-way DNA Junction is a Y-shaped molecule in which there is no helix-helix stacking EMBO J 9, 1659–1664

    CAS  Google Scholar 

  111. McLean M. J., Seela F., and Waring M. J. (1989) echinomycin-induced hypersensitivity to osmium tetroxide of DNA fragments incapable of forming Hoogsteen base pairs Proc Natl Acad Sci USA 86. 9687–9691

    Article  CAS  Google Scholar 

  112. Bailly C. and Waring M. J. (1995) Comparison of different footprinting methodologies for detecting binding sites for a small ligand on DNA J Biomol Struct. Dyn 12, 869–898

    Article  CAS  Google Scholar 

  113. Mendel D. and Dervan P. B. (1987) Hoogsteen base pairs proximal and distal to echinomycin Proc Natl Acad Sci USA 84, 91–914

    Article  Google Scholar 

  114. Portugal J., Fox K. R., McLean M. J., Richenberg J. L., and Waring M. J. (1988) Diethyl pyrocarbonate can detect a modified DNA structure induced by the binding of qumoxalme antibiotics. Nucleic Acids Res 16, 3655–3670

    Article  CAS  Google Scholar 

  115. Fox K. R. and Kentebe E. (1990) footprinting studies on the effect of echmomycin on the structure of a bent DNA fragment. Biochem J 269, 217–221

    Article  CAS  Google Scholar 

  116. Jeppesen C. and Nielsen P. E. (1988) Detection of intercalation-induced changes in DNA structure by reaction with diethylpyrocarbonate or potassium permanganate Evidence against the induction of Hoogsteen base paning by echinomycin FEBS Lett 231, 172–176.

    Article  CAS  Google Scholar 

  117. Fox K. R. and Kentebe E. (1990) echinomycin binding to the sequence CG(AT)nCG alters the structure of the central AT region. Nuclerc Acids Res 18, 1957–1963

    Article  CAS  Google Scholar 

  118. Fox K. R., Marks J. N., and Waterloh K. (1991) Echmomycin to alternating AT Nucleic Acids Res 19, 6725–6730

    Article  CAS  Google Scholar 

  119. Waterloh K. and Fox K. R. (1991) Interaction of echinomycin with An Tn and (AT)n regions flanking its CG binding site. Nucleic Acids Res 19, 671–6724.

    Article  Google Scholar 

  120. Sayers E. W. and Waring M. J. (1993) footprinting titration studies on the binding of echinomycin to DNA incapable of forming Hoogsteen base pairs Biochemistry 32, 9094–9107

    Article  CAS  Google Scholar 

  121. Fox K. R. and Cons B. M. G. (1993) Interaction of mithramycm with DNA fragments complexed with nucleosome core particles comparison with distamycin and echinomycm Biochemistry 32, 7162–7171

    Article  CAS  Google Scholar 

  122. Waterloh K., Olsen R. K., and Fox K. R. (1992) Btfunctional intercalator [N-MeCys3,N-MeCys7]TANDEM binds to the dinucleotide TpA Biochemistry 31, 6246–6253

    Article  CAS  Google Scholar 

  123. Lavesa M., Olsen R. K., and Fox K. R. (1993) Sequence-specific binding of [N-MeCys3,N-MeCys7]TANDEM to TpA. Biochem J 289, 605–607.

    Article  CAS  Google Scholar 

  124. Waterloh K. and Fox K. R. (1990) Effect of actinomycin on a (TA), plasmid insert, Anti-Cancer Drug Des 5, 89–92.

    CAS  Google Scholar 

  125. Waterloh K. and Fox K. R. (1991) The effects of actinomycin on the structure of dAn dTn and (dA-dT)n regions surrounding its GC binding site J Biol Chem 266, 6381–6388.

    CAS  Google Scholar 

  126. Bailly F., Bailly C., Waring M. J., and Hemchart J. P. (1992) Selective binding to AT sequences in DNA by an acridine-linked peptide containing the SPKK motif Biochem Biophys Res Commun 184, 930–937

    Article  CAS  Google Scholar 

  127. Flock S., Badly F., Bailly C., Waring M. J., Henichart J. P., Colson P., and Houssier C. (1994) Interaction of two peptide-acrtdine conjugates containing the SPKK peptide motif with DNA and chromatm J Biomol Struct Dyn 11, 881–900.

    Article  CAS  Google Scholar 

  128. Fox K. R. and Gregg G. W. (1988) Diethylpyrocarbonate and permanganate provide evidence for an unusual DNA conformation Induced by the binding of the antitumour antibiotics bleomycin and phleomycin Nucleic Acids Res 16, 2063–2075

    Article  CAS  Google Scholar 

  129. Nightingale K. P. and Fox K. R. (1992) Interaction of bleomycm with a bent DNA fragment Biochem J 284, 929–934.

    Article  CAS  Google Scholar 

  130. Fox K. R. (1988) Footprinting studies on the interactions of nogalamycin, arugomycin, decilorubicin and viriplanin with DNA Anti-Cancer Drug Design 3, 157–168

    CAS  Google Scholar 

  131. Bailly C., OhUigm C., Rivalle C., Btsagm E. Hemchart J. P., and Waring M. J. (1990) Sequence-selective binding of an ellipticine derivative to DNA Nucleic Acids Res 186, 283–6291

    Google Scholar 

  132. atlly C. and Waring M. J. (1993) Preferential intercalation at AT sequences in DNA by lucanthone, hycanthone, and indazole analogs, A footprinting study Biochemistry 32, 5985–5993

    Article  Google Scholar 

  133. Marrot L. and Leng M. (1989) Chemical probes of the conformation of DNA modified by cis-diamminedxhloroplatinum(I1). Biochemistry 28, 1454–1461

    Article  CAS  Google Scholar 

  134. Schwartz A., Marrot L., and Leng M. (1989) Conformation of DNA modified at a d(GG) or a d(AG) site by the antitumor drug cis-diamminedichloroplatinum(II) Biochemistry 28, 7975-1979.

    Google Scholar 

  135. Ford K. G. and Needle S. (1995) Perturbations in DNA structure upon interaction with porphyrms revealed by chemical probes. DNA footprinting and molecular modelling BioOrg Med Chem 3, 611–677

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Bailly, C., Waring, M.J. (1997). Diethylpyrocarbonate and Osmium Tetroxide as Probes for Drug-Induced Changes in DNA Conformation In Vitro. In: Fox, K.R. (eds) Drug-DNA Interaction Protocols. Methods in Molecular Biology™, vol 90. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-447-X:51

Download citation

  • DOI: https://doi.org/10.1385/0-89603-447-X:51

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-447-1

  • Online ISBN: 978-1-59259-574-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics