Skip to main content

Polysome Analysis

  • Protocol
Yeast Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 53))

Abstract

During the cyclic process of translation, a small (40S) and large (60S) ribosomal subunit associate with mRNA to form an 80S complex (monosome). This ribosome moves along the mRNA during translational elongation, and then dissociates into the 40S and 60S subunits on termination. During elongation by one ribosome, further ribosomes can initiate translation on the same mRNA to form polysomes. Each polysomal complex can contain from two to over twenty ribosomes, and the mass of each complex is determined primarily by the number of ribosomes it contains. Hence, the population of polysomes within the cell can be size-fractionated by sucrose density gradient centrifugation on the basis of the loading of ribosomes on the mRNA. Also, mRNA that is being actively translated can be fractionated from untranslated mRNA by separating polysomal and monosomal material by centrifugation through sucrose shelves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartwell, L. H., Hutchison, H. T., Holland, T. M., and McLaughlin, C. S. (1970) The effect of cycloheximide upon polyribosome stability in two yeast mutants defective respectively in the initiation of peptide chains and in messenger RNA synthesis. Mol. Gen. Genet. 106, 347–361.

    Article  PubMed  CAS  Google Scholar 

  2. Maicas, E., Pluthero, F. G., and Friesen, J. D. (1988) The accumulation of three yeast ribosomal proteins under conditions of excess mRNA is determined primarily by fast protein decay. Mol. Cell Biol. 8, 169–175.

    PubMed  CAS  Google Scholar 

  3. Tzamarias, D., Roussou, I., and Thireos, G. (1989) Coupling of GCN4 mRNA translational activation with decreased rates of polypeptide chain elongation. Cell 57, 947–954.

    Article  PubMed  CAS  Google Scholar 

  4. Baim, S. B., Pietras, D. F., Eustice, D. C., and Sherman F. (1985) A mutation allowing an mRNA secondary structure diminishes translation of Saccharomyces cerevisiae iso-1-cytochrome c. Mol. Cell Biol. 5, 1839–1846.

    PubMed  CAS  Google Scholar 

  5. Santiago, T. C., Bettany, A. J. E., Purvis, I. J., and Brown, A. J. P. (1987) Messenger RNA stability in Saccharomyces cerevisiae the influence of translation and poly(A) tail length. Nucleic Acids Res. 15, 2417–2429.

    Article  PubMed  CAS  Google Scholar 

  6. Bettany, A. J. E., Moore, P. A., Cafferkey, R., Bell, L. D., Goodey, A. R., Carter, B. L. A., and Brown, A. J. P. (1989) 5′-secondary structure formation, in contrast to a short string of non-preferred codons, inhibits the translation of the pyruvate kinase mRNA in yeast. Yeast 5, 187–198.

    Article  PubMed  CAS  Google Scholar 

  7. Sagliocco, F. A., Vega Laso, M. R. V., Zhu, D., Tuite, M. X. F., McCarthy, J. E. G., and Brown, A. J. P. (1993) The influence of 5′-secondary structures upon ribosome binding to mRNA during translation in yeast. J. Biol. Chem. 2, 26,522–26,530.

    Google Scholar 

  8. Hutchison, H. T. and Hartwell, L. H. (1967) Macromolecule synthesis in yeast spheroplasts. J. Bacteriol. 94, 1697–1705.

    PubMed  CAS  Google Scholar 

  9. Beggs, J. D. (1978) Transformation of yeast by a replicating hybrid plasmid. Nature 275, 104–109.

    Article  PubMed  CAS  Google Scholar 

  10. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  11. Ross, J. and Kobs, G. (1986) H4 histone messenger RNA decay in cell-free extracts initiates at or near the 3′-terminus and proceeds 3′ to 5′. J. Mol. Biol. 188, 579–593.

    Article  PubMed  CAS  Google Scholar 

  12. Lehrach, R. H., Diamond, D., Wozney, J. M., and Boedtker, H. (1977) RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical re-examination. Biochemistry 16, 4743–4751.

    Article  PubMed  CAS  Google Scholar 

  13. Thomas, P. S. (1980) Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. USA 77, 5201–5205.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Sagliocco, F.A., Moore, P.A., Brown, A.J.P. (1996). Polysome Analysis. In: Evans, I.H. (eds) Yeast Protocols. Methods in Molecular Biology™, vol 53. Humana Press. https://doi.org/10.1385/0-89603-319-8:297

Download citation

  • DOI: https://doi.org/10.1385/0-89603-319-8:297

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-319-1

  • Online ISBN: 978-1-59259-540-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics