Skip to main content

Insertional Mutagenesis by Ty Elements in Saccharomyces cerevisiae

  • Protocol
Yeast Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 53))

  • 2332 Accesses

Abstract

The development of genetically marked Ty elements that transpose at high levels has made Ty mutagenesis a useful tool in yeast genetics (1,2). Ty mutagenesis is useful for several reasons:

  1. 1.

    Mutations made by insertion of a marked Ty element into a gene permit the rapid cloning of that gene into Escherichia coli.

  2. 2.

    A tagged locus can be rapidly mapped to a chromosome by hybridization to chromosomes separated by electrophoresis.

  3. 3.

    Mutations caused by Ty elements have useful phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boeke, J. D., Garfinkel, D. J., Styles, C. A., and Fink, G. R. (1985) Ty elements transpose through an RNA intermediate. Cell 40, 491–500.

    Article  PubMed  CAS  Google Scholar 

  2. Garfinkel, D. J., Mastrangelo, M. F., Sanders, N. J., Shafer, B. K., and Strathern, J. N. (1988) Transposon tagging using Ty elements in yeast. Genetics 120, 95–108.

    PubMed  CAS  Google Scholar 

  3. Boeke, J. D. and Sandmeyer, S. B. (1991) Yeast transposable elements, in The Molecular and Cellular Biology of the Yeast Saccharomyces Genome Dynamics, Protein Synthesis, and Energetics, vol. 1 (Broach, J. R., Pringle, J., and Jones, E., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 193–261.

    Google Scholar 

  4. Sherman, F., Fink, G. R., and Hicks, J. B. (1986) Laboratory Course Manual for Methods in Yeast Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  5. Ito, H., Fukuda, Y., Murata, K., and Kimura, A. (1983) Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163–168.

    PubMed  CAS  Google Scholar 

  6. Curcio, M. J., Sanders, N. J., and Garfinkel, D. J. (1988) Transcriptional competence and transcription of endogenous Ty elements in Saccharomyces cerevisiae. Implications for regulation of transposition. Mol. Cell Biol. 8, 3571–3581.

    PubMed  CAS  Google Scholar 

  7. Garfinkel, D. J., Boeke, J. D., and Fink, G. R. (1985) Ty element transposition. Reverse transcriptase and virus-like particles. Cell 42, 507–517.

    Article  PubMed  CAS  Google Scholar 

  8. Boeke, J. D., Xu, H., and Fink, G. R. (1988) A general method for the chromosomal amplification of genes in yeast. Science 239, 280–282.

    Article  PubMed  CAS  Google Scholar 

  9. Eichinger, D. J. and Boeke, J. D. (1988) The DNA intermediate in yeast Ty1 element transposition copurifies with virus-like particles. Cell-free Ty1 transposition. Cell 54, 955–966.

    Article  PubMed  CAS  Google Scholar 

  10. Jimenez, A. and Davies, J. (1980) Expression of a transposable antibiotic resistance element in Saccharomyces cerevisiae: a potential selection for eukaryotic cloning vectors. Nature 287, 869–871.

    Article  PubMed  CAS  Google Scholar 

  11. Curcio, M. J. and Garfinkel, D. J. (1991) Single-step selection for Ty1 element retrotransposition. Proc. Natl. Acad. Sci. USA 88, 936–940.

    Article  PubMed  CAS  Google Scholar 

  12. Rose, M., Casadaban, M. J., and Botstein, D. (1981) Yeast genes fused to β-galactosidase in Escherichia coli can be expressed normally in yeast. Proc. Natl. Acad. Sci. USA 78, 2460–2464.

    Article  PubMed  CAS  Google Scholar 

  13. Guarente, L., and Ptashne, M. (1981) Fusion of Escherichia coli lacZ to the cytochrome C gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 78, 2199–2203.

    Article  PubMed  CAS  Google Scholar 

  14. Webster, T. D. and Dickson, R. C. (1983) Direct selection of Saccharomyces cerevisiae resistant to the antibiotic G418 following transformation with a DNA vector carrying the kanamycin-resistance gene of Tn903. Gene 26, 243–252.

    Article  PubMed  CAS  Google Scholar 

  15. Boeke, J. D., Lacroute, F., and Fink, G. R. (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197, 345, 346.

    Article  PubMed  CAS  Google Scholar 

  16. Winston, F., Chaleff, D. T., Valent, B., and Fink, G. R. (1984) Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 107, 179–197.

    PubMed  CAS  Google Scholar 

  17. Boeke, J. D., Styles, C. A., and Fink, G. R. (1986) Saccharomyces cerevisiae SPT3 gene is required for transposition and transpositional recombination of chromosomal Ty elements. Mol. Cell Biol. 6, 3575–3581.

    PubMed  CAS  Google Scholar 

  18. Winston, F., Durbin, K. J., and Fink, G. R. (1984) The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell 39, 675–682.

    Article  PubMed  CAS  Google Scholar 

  19. Chattoo, B. B., Sherman, F., Azubalis, D. A., Fjellstedt, T. A., Mehvert, D., and Ogur, M. (1979) Selection of lys2 mutants in the yeast Saccharomyces cerevisiae by the utilization of α-aminoadipate. Genetics 93, 51–65.

    PubMed  CAS  Google Scholar 

  20. Eibel, H. and Philippsen, P. (1984) Preferential integration of yeast transposable element Ty into a promoter region. Nature 307, 386–388.

    Article  PubMed  CAS  Google Scholar 

  21. Simchen, G., Winston, F., Styles, C. A., and Fink, G. R. (1984) Ty-mediated expression of the LYS2 and HIS4 genes of Saccharomyces cerevisiae is controlled by the same SPT genes. Proc. Natl. Acad. Sci. USA 81, 2431–2434.

    Article  PubMed  CAS  Google Scholar 

  22. Errede, B., Cardillo, T. S., Sherman, F., Dubois, E., Deschamps, J., and Wiame, J. M. (1980) Mating signals control expression of mutations resulting from insertion of a transposable repetitive element adjacent to diverse yeast genes. Cell 22, 427–436.

    Article  PubMed  CAS  Google Scholar 

  23. Rose, M. D., Novick, P., Thomas, J. H., Botstein, D., and Fink, G. R. (1987) A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60, 237–243.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Garfinkel, D.J. (1996). Insertional Mutagenesis by Ty Elements in Saccharomyces cerevisiae . In: Evans, I.H. (eds) Yeast Protocols. Methods in Molecular Biology™, vol 53. Humana Press. https://doi.org/10.1385/0-89603-319-8:227

Download citation

  • DOI: https://doi.org/10.1385/0-89603-319-8:227

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-319-1

  • Online ISBN: 978-1-59259-540-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics