Skip to main content

Proteolytic Enzymes for Peptide Production

  • Protocol
Enzymes of Molecular Biology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 16))

Abstract

There are three main reasons why a protein chemist might wish to cleave a protein of interest into peptide fragments. The first reason is to generate, by extensive proteolysis, a large number of relatively small (5–20 residues) peptides either for peptide mapping (see vol. 1, Chapter 5) or for purification and subsequent manual sequence determination by the dansyl-Edman method (see vol. 1, Chapter 24). The second reason is to generate relatively large peptides (50–150 residues) by limited proteolysis for automated sequence analysis, such as with the gas-phase sequencer. The third reason is to prepare, again by limited proteolysis, specific fragments for studies relating structure to function, In each case, the specificity of the enzyme used to generate the peptides is a prime consideration, since the aim is to provide high yields of discrete fragments. It can be appreciated that significantly <100% cleavage at some or all of the cleavage sites on the protein being digested will generate a far more complex mixture of a larger number of polypeptides, each in relatively low yield. It is for this reason that enzymes of high specificity, such as trypsin, which cleaves at the C-terminal side of arginine and lysine residues, are mainly used for peptide production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller, D. D., Horbett, T. A., and Teller, D. C. (1971) Reevaluation of the activation of bovine chymoytrypsinogen A. Biochemistry 10, 4641–4648.

    Article  PubMed  CAS  Google Scholar 

  2. Wilcox, P. E. (1970) Chymotrypsinogens—Chymotrypsins. Methods Enzymol. 19, 64–80.

    Article  Google Scholar 

  3. Desnuelle, P. (1960) Chymotrypsin. Enzymes 4, 93–120.

    CAS  Google Scholar 

  4. Hess, G. P. (1971) Chymotrypsin—Chemical properties and catalysis. Enzymes 4, 213–250.

    Google Scholar 

  5. Tomlinson, G., Shaw, M. C., and Viswanatha, T. (1976) Chymotrypsin (S). Methods Enzymol. 34, 415–420.

    Google Scholar 

  6. Baumann, W. K., Bizzozero, S. A., and Dutler, H. (1970) Specificity of α-chymotrypsin. Dipeptide substrates. FEBS Lett. 8, 257–260.

    Article  PubMed  CAS  Google Scholar 

  7. Hartley, B. S. and Kaffman, B. J. (1966) Corrections to the amino acid sequence of bovine chymotrypsinogen A. Biochem. J. 10, 229–231.

    Google Scholar 

  8. Schwert, G. W. and Takenaka, Y. (1955) A spectrophotometric determination of trypsin and chymotrypsin. Biochim. Biophys. Acta. 16, 570–575.

    Article  PubMed  CAS  Google Scholar 

  9. Kumar, S. and Hein, G. E. (1969) A rapid kinetic assay method for a-chymo-trypsin and its application. Anal. Biochem. 30, 203–211.

    Article  PubMed  CAS  Google Scholar 

  10. Spackman, D. H., Stein, W. H., and Moore, S. (1960) The disulfide bonds of ribonuclease. J. Biol. Chem. 235, 648–659.

    PubMed  CAS  Google Scholar 

  11. Umezawa, H. (1976) Structures and activities of protease inhibitors of microbial origin. Methods Enzymol. 45, 678–700.

    Article  PubMed  CAS  Google Scholar 

  12. Jansen, E. F. and Balls, A. K. (1952) The inhibition of β-and γ-chymotrypsin and trypsin by diisopropyl fluorophosphate. J. Biol. Chem. 194, 721–727.

    PubMed  CAS  Google Scholar 

  13. Green, M. M., Gladner, J. A., Cunningham, L. W., and Neurath, H. (1952) The effects of divalent cations on the enzymic activities of trypsin and of α-chymotrypsin. J. Am. Chem. Soc. 74, 2122,2123.

    Article  CAS  Google Scholar 

  14. Mitchell, W. M. and Harrington, W. F. (1968) Purification and properties of clostridiopeptidase B (Clostripain). J. Biol. Chem. 243, 4683–4692.

    PubMed  CAS  Google Scholar 

  15. Mitchell, W. M. and Harrington, W. F. (1971) Clostripain. Enzymes 3, 699–719.

    Article  Google Scholar 

  16. Cole, P. W., Murakami, K., and Inagami, T. (1971) Specificity and mechanism of Clostripain catalysis. Biochemistry 10, 4246–4252.

    Article  PubMed  CAS  Google Scholar 

  17. Mitchell, W. M. (1977) Cleavage at arginine residues by Clostripain. Methods Enzymol. 47, 165–176.

    Article  PubMed  CAS  Google Scholar 

  18. Mitchell, W. M. and Harrington, W. F. (1970) Clostripain. Methods Enzymol. 19, 635–642.

    Article  Google Scholar 

  19. Shih, J. W. and Hash, J. H. (1971) The N,O-Diacetylmuramidase of Chalaropsis species. Amino acid composition and partial structure formula. J. Biol. Chem. 246, 994–1006.

    PubMed  CAS  Google Scholar 

  20. Labouesse, B. and Gros, P. (1960) Laclostripaine, protéase de Clostridium histolyticum Purification et activation par les thiols. Bull. Soc. Chim. Biol. 42, 543–558.

    PubMed  CAS  Google Scholar 

  21. Porter, W. H., Cunningham, L. W., and Mitchell, W. M. (1971) Studies on the active site of Clostripain. The specific inactivation by the chloromethyl ketone derived from α-N-Tosyl-L-Lysine. J. Biol. Chem. 246, 7675–7682.

    PubMed  CAS  Google Scholar 

  22. Mandl, I. (1961) Collagenases and elastases. Adv. Enzymol. 23, 163–264.

    CAS  Google Scholar 

  23. Hartley, B. S. and Shotton, D. M. (1971) Pancreatic elastase. Enzymes 3, 323–373.

    Article  Google Scholar 

  24. Shotton, D. M. (1970) Elastase. Methods Enzymol. 19, 113–140.

    Article  Google Scholar 

  25. Vered, M., Gertler, A., and Burnstein, Y. (1986) Partial amino acid sequence of porcine elastase II. Active site and the activation peptide regions. Int. J. Peptide Prot. Res. 27, 183–190.

    Article  CAS  Google Scholar 

  26. Atlas, D. (1975) The mapping of the active site of porcine elastase: size specificity, stereospecificity and the CPK model. “PEPTIDES 1974. Proceedings of the 13th European Peptide Symposium Kiryat Anauim, Israel” (Wolman, Y., ed.), pp. 361–376.

    Google Scholar 

  27. Naughton, M. A. and Sanger, F. (1961) Purification and specificity of pancreatic elastase. Biochem. J. 78, 156–163.

    PubMed  CAS  Google Scholar 

  28. Narayanon, A. S. and Anwar, R. A. (1969) The specificity of purified porcine elastase. Biochem. J. 114, 11–17.

    Google Scholar 

  29. Shotton, D. M. and Hartley, B. S. (1970) Amino acid sequence of porcine pancreatic elastase and its homologies with other serine proteinases. Nature 225, 802–806.

    Article  PubMed  CAS  Google Scholar 

  30. Shirasu, Y. Yoshida, H., Mikayama, T., Matsuki, S., Tanaka, J. and Ikenaga, H. (1986) Isolation and expression in E. coli of a cDNA clone encoding porcine pancreatic elastase. J. Biochem. 99, 1707–1712.

    PubMed  CAS  Google Scholar 

  31. Mandl, I. (1962) Pancreatic elastase. Methods Enzymol. 5, 665–673.

    Article  CAS  Google Scholar 

  32. Favre-Bonvin, G., Bostancioglu, K., and Wallach, J. M. (1986) Ca2+ and Mg2+ protection against thermal denaturation of pancreatic elastase. Biochem. Internatl. 13, 983–989.

    CAS  Google Scholar 

  33. Shotton, D. M. and Watson, H. C. (1970) Three-dimensional structure of tosylelastase. Nature 225, 811–816.

    Article  PubMed  CAS  Google Scholar 

  34. Lewis, U. J., Williams, D. E., and Brine, N. G. (1956) Pancreatic elastase: purification, properties and function. J. Biol. Chem. 222, 705–720.

    PubMed  CAS  Google Scholar 

  35. Lamy, F., Craig, C. P., and Tauber, S. (1961) Studies on elastase and elastin. Assay and properties of elastase. J. Biol. Chem. 236, 86–91.

    PubMed  CAS  Google Scholar 

  36. Gertler, A. and Birk, Y. (1970) Isolation and characterization of porcine proelastase. Eur. J. Biochem. 12, 170–176.

    Article  PubMed  CAS  Google Scholar 

  37. Walford, R. L. and Kickhöffen, B. (1962) Selective inhibition of elastolytic and proteolytic properties of elastae. Arch. Biochem. Biophys. 98, 191–196.

    Article  PubMed  CAS  Google Scholar 

  38. Schenkein, I., Boesman, M., Takarsky, E., Fishman, L., and Levy, M. (1969) Proteases from mouse submaxillary gland. Biochem. Biophys. Res. Commun. 36, 156–165.

    Article  PubMed  CAS  Google Scholar 

  39. Schenkein, I., Franklin, E. C., and Frangione, B. (1981) Proteolytic enzymes from the mouse submaxillary gland. A partial sequence and demonstration of spontaneous cleavages. Arch. Biochem. Biophys. 209, 57–62.

    Article  PubMed  CAS  Google Scholar 

  40. Schenkein, I., Levy, M., Franklin, E. C., and Frangione, B. (1977) Proteolytic enzymes from the mouse submaxillary gland. Specificity restricted to arginine residues. Arch. Biochem. Biophys. 182, 64–70.

    Article  PubMed  CAS  Google Scholar 

  41. Wasserman, R. L. and Capra, J. D. (1978) The amino acid sequence of the light chain variable region of a canine myeloma immunoglobulin; Evidence that the Vk subgroups predated mammalian speciation. Immunochemistry 15, 303–305.

    Article  PubMed  CAS  Google Scholar 

  42. Boesman, M., Levy, M., and Schenkein, I. (1976) Esteroproteolytic enzymes from the submaxillary gland. Kinetics and other physicochemical properties. Arch. Biochem. Biophys. 175, 463–476.

    Article  PubMed  CAS  Google Scholar 

  43. Levy, M., Fishman, L., and Scheinkein, I. (1970) Mouse submaxillary gland proteases. Methods Enzymol. 19, 672–681.

    Article  Google Scholar 

  44. Keesey, J. (ed.) (1989) Biochemica Information: A Revised Biochemical Reference Source. Boehringer Mannheim Biochemicals, Indianapolis, IA.

    Google Scholar 

  45. Schenkein, I., Gabor, M., Franklin, E. C., and Frangione, B. (1979) Structural studies of a male mouse submaxillary gland protease. Fed. Proc. Fed. Amer. Chem. Soc. Exp. Biol. 38, 326.

    Google Scholar 

  46. Porzio, M. A. and Pearson, A. M. (1975) Isolation of an extracellular neutral proteinase from Pseudomonas fragi. Biochim. Biophys. Acta. 384, 235–241.

    PubMed  CAS  Google Scholar 

  47. Noreaau, J. and Drapeau G. R. (1979) Isolation and properties of the protease from the wild-type and mutant tralns of Pseudomonas fragi. J. Bacteriol. 140, 911–916.

    Google Scholar 

  48. Drapeau, G. R. (1980) Substrate specficity of a proteolytic enzyme isolated from a mutant of Pseudomonas fragi. J. Biol. Chem. 255, 839–840.

    PubMed  CAS  Google Scholar 

  49. Ingrosso, D., Fowler, A. V., Bleibaum, J., and Clarke, S. (1989) Specificity of Endoproteinase Asp-N (Pseudomonas fragi): Cleavage at glutamyl residues in two proteins. Biochem. Biophys. Res. Commun. 162, 1528–1534.

    Article  PubMed  CAS  Google Scholar 

  50. Drapeau, G. R., Boily, Y., and Houmard, J. (1972) Purification and properties of an extracellular protease of Staphlococcus aureus. J. Biol. Chem. 247, 6720–6726.

    PubMed  CAS  Google Scholar 

  51. Houmard, D. and Drapeau, G. R. (1972) Staphlococcal protease: A proteolytic enzyme specific for glutamoyl bonds. Proc. Natl. Acad. Sci. 69, 3506–3509.

    Article  PubMed  CAS  Google Scholar 

  52. Austen, B. M. and Smith, E. L. (1976) Action of staphlococcal proteinase on peptides of varying chain length and composition. Biochem. Biophys. Res. Commun. 72, 411–417.

    Article  PubMed  CAS  Google Scholar 

  53. Wooton, J. C., Baron, A. J., and Fincham, R. S. (1975) The amino acid sequence of Nemospora NADP-specific glutamate dehydrogenase. Biochem. J. 149, 749–755.

    Google Scholar 

  54. Walker, J. M., Hastings, J. R., and Johns, E. W. (1977) The primary structure of a non-histone chromosomal protein. Eur. J. Biochem. 76, 461–468.

    Article  PubMed  CAS  Google Scholar 

  55. Drapeau, G. R. (1976) Protease from Staphlococcus aureus. Methods Enzymol. 45, 469–475.

    Article  PubMed  CAS  Google Scholar 

  56. Drapeau, G. R. (1977) Cleavage at glutamic acid with staphlococcal protease. Methods Enzymol. 47, 189–191.

    Article  PubMed  CAS  Google Scholar 

  57. Jekel, P. A., Weijer, W. J., and Beintema, J. J. (1983) Use of endoproteinase Lys-C from Lysobacter enzymogenes in protein sequence analysis. Anal. Biochem. 134, 347–354.

    Article  PubMed  CAS  Google Scholar 

  58. Fruton, J. S. (1971) Pepsin. Enzymes 4, 120–164.

    Google Scholar 

  59. Tang, J. (1970) Gastricsin and pepsin. Methods Enzymol. 19, 406–421.

    Article  Google Scholar 

  60. Rajagopalan, T. G., Moore, S., and Stein, W. H. (1966) Pepsin from pepsinogen. Purification and properties. J. Biol. Chem. 241, 4940–4950.

    PubMed  CAS  Google Scholar 

  61. Perimann, G. E. (1959) Effect of solvents and of temperature on the optical rotary properties of pepsin. Proc. Natl. Acad. Sci. USA 45, 915–922.

    Article  Google Scholar 

  62. Matsubara, H. (1970) Purification and assay of thermolysin. Methods Enzymol. 19, 642–651.

    Article  Google Scholar 

  63. Heinrikson, R. L. (1977) Applications of thermolysin in protein structural analysis. Methods Enzymol. 47, 75–189.

    Google Scholar 

  64. Matsubara, H., Sasaki, R., Singer, A., and Jukes, T. H. (1966) Specific nature of hydrolysis of insulin and tobacco mosaic virus protein by thermolysin. Arch. Biochem. Biophys. 115, 324–331.

    Article  PubMed  CAS  Google Scholar 

  65. Titani, K., Hermodson, M. A., Ericson, L. H., Walsh, K. A., and Neurath, H. (1972) Amino acid sequence of thermolysin. Nature 238, 35–37.

    CAS  Google Scholar 

  66. Latt, S. A., Holmquist, B., and Vallee, B. L. (1969) Thermolysin: A zinc metalloenzyme. Biochem. Biophys. Res. Commun. 37, 333–339.

    Article  PubMed  CAS  Google Scholar 

  67. Walsh, K. A. (1970) Trypsinogens and trypsins of various species. Methods Enzymol. 19, 41–63.

    Article  Google Scholar 

  68. Mares-Guia, M. and Shaw, E. (1965) Studies on the active center of trypsin. J. Biol. Chem. 240, 1579–1585.

    PubMed  CAS  Google Scholar 

  69. Harris, J. I. (1956) Effect of urea on trypsin and α-chymotrypsin. Nature 177, 471–473.

    Article  PubMed  CAS  Google Scholar 

  70. Anson, M. L. (1938) Estimation of pepsin, trypsin, papain and cathepsin with haemoglobin. J. Gen. Physiol. 22, 79–89.

    Article  PubMed  CAS  Google Scholar 

  71. Schwert, G. W. and Eisenberg, M. A (1949) Kinetics of the amidase and esterase activities of trypsin. J. Biol. Chem. 179, 665–672.

    PubMed  CAS  Google Scholar 

  72. Nord, F. F. and Bier, M. (1953) Mechanism of enzyme action. LV. Interaction between calcium and trypsin. Biochem. Biophys. Acta 12, 56–60.

    Article  PubMed  CAS  Google Scholar 

  73. Birk, Y. (1961) Purification and some properties of a highly active inhibitor of trypsin and α-chymotrypsin from soybeans. Biochim. Biophys. Acta 54, 378–381.

    Article  PubMed  CAS  Google Scholar 

  74. Shaw, E. and Springhorn, S. (1967) Identification of the histidine residue at the active center of trypsin labeled by TLCK. Biochem. Biophys. Res. Commun. 27, 391–397.

    Article  PubMed  CAS  Google Scholar 

  75. Carrey, E. A. and Epand, R. M. (1983) Conformational and biological properties of glucagon fragments containing residues 1–17 and 19–29. J. Peptide Protein Res. 22, 362–370.

    Article  CAS  Google Scholar 

  76. Grunnet, I. and Knudsen, J. (1983) Medium-chain fatty acid synthesis by goat mammary-gland fatty acid synthetase. The effect of limited proteolysis. Biochem. J. 209, 215–222.

    PubMed  CAS  Google Scholar 

  77. Poncz, L. and Dearborn, D. G. (1983) The resistance to tryptic hydrolysis of peptide bonds adjacent to N,N-dimethyllysyl residues. J. Biol. Chem. 258, 1844–1850.

    PubMed  CAS  Google Scholar 

  78. Bentz, H., Chang, R-J., Thompson, A. Y., Glaser, C. B., and Rosen, D. M. (1990) Amino acid sequence of bovine osteoinductive factor. J. Biol. Chem. 265, 5024–5029.

    PubMed  CAS  Google Scholar 

  79. Tomasselli, A. G., Frank, R., and Schiltz, E. (1986) The complete primary structure of GTP:AMP phosphotransferase from beef heart mitochondria. FEBS Lett. 202, 303–307.

    Article  PubMed  CAS  Google Scholar 

  80. Perides, G., Kuhn, S., Scherbarth, A., and Traub, P. (1987) Probing of the structural stability of vimentin and desmin-type intermediate filaments with Ca2+-activated proteinase, thrombin and lysine-specific endoproteinase Lys-C. Eur. J. Cell Biol. 43, 450–458.

    PubMed  CAS  Google Scholar 

  81. Steffens, G. J, Gunzler, W. A., Ötting, F., Frankus, E., and Flohé, L. (1982) The complete amino acid sequence of low molecular weight urokinase from human urine. Hoppe-Seyler’s Z. Physiol. Chem. 363, 1043–1058.

    Article  PubMed  CAS  Google Scholar 

  82. Konigsberg, W., Goldstein, J., and Hill, R. J. (1963) The structure of human haemoglobin VII. The digestion of the β chain of human haemoglobin with pepsin. J. Biol. Chem. 238, 2028–2033.

    PubMed  CAS  Google Scholar 

  83. Price, N. C., Duncan, D., and McAlister, J. W. (1985) Inactivation of rabbit muscle phosphoglycerate mutase by limited proteolysis with thermolysin. Biochem.J. 229, 167–171.

    PubMed  CAS  Google Scholar 

  84. Eggerer, H. (1984) Hysteretic behaviour of citrate synthase. Site-directed limited proteolysis. Eur. J. Biochem. 143, 205–212.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press Inc.

About this protocol

Cite this protocol

Sweeney, P.J., Walker, J.M. (1993). Proteolytic Enzymes for Peptide Production. In: Burrell, M.M. (eds) Enzymes of Molecular Biology. Methods in Molecular Biology™, vol 16. Humana Press. https://doi.org/10.1385/0-89603-234-5:277

Download citation

  • DOI: https://doi.org/10.1385/0-89603-234-5:277

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-322-1

  • Online ISBN: 978-1-59259-503-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics