Skip to main content

RNase A (EC 3.1.27.5)

  • Protocol
Enzymes of Molecular Biology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 16))

  • 3043 Accesses

Abstract

The term ribonuclease (RNase) is an imprecise term and is used to cover both enzymes that cause exonucleolytic cleavage and endonucleolytic cleavage of RNA. Exonucleases may cleave the RNA in 3′-5′ direction or vice versa, whereas some endoribonucleases have a specific requirement for certain bases. For example the RNase from Bacillus cereus cleaves at pyrimidine residues (1). Some enzymes produce 5′ phosphomononucleotides, whereas others give rise to 3′ phosphomononucleotides. This chapter focuses on the endoribonuclease RNase A (otherwise described as RNase, RNase I, or pancreatic ribonuclease), which shows some base specificity in where it cleaves RNA. The enzyme has been particularly well characterized at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lockard, R. E., Alzner-DeWeerd, B., Heckman, J. E., MacGee, J., Tabor, M. W., and Raj-Bhandary U. L. (1978) Sequence analysis of 5′ [32p] labelled mRNA and tRNA using polyacrylamide gel electrophoresis. Nucleic Acid Res. 5, 37–56.

    Article  PubMed  CAS  Google Scholar 

  2. Kunitz, M. (1940) Crystalline ribonuclease. J. Gen. Physiol. 24, 15–32.

    Article  PubMed  CAS  Google Scholar 

  3. Smyth, D. G., Stein, W. H. and Moore, S. (1963) The sequence of amino acid residues in bovine pancreatic ribonuclease; revisions and confirmations. J. Biol. Chem. 238, 227–234.

    CAS  Google Scholar 

  4. Afinsen, C. B. (1973) Principles that govern the folding of protein chains. Science 181, 223–230

    Article  Google Scholar 

  5. Blackburn, P. and Moore, S. (1982) Pancreatic ribonuclease, in The Enzymes, vol XV (Boyer, P. D., ed.), Academic, New York, pp. 317–433.

    Google Scholar 

  6. Bentiema, J. J., Gaastra, W., Scheffer, A. J., and Welling, G. W. (1976) Carbohydrate in pancreatic ribonucleases. Eur. J. Biochem. 63, 441–448.

    Article  Google Scholar 

  7. Haugen, T. H. and Heath, E. C. (1979) De novo biosynthesis of an enzymatically active precursor form of bovine pancreatic RNase. Proc. Natl. Acad. Sci. USA 76, 2689–2693.

    Article  PubMed  CAS  Google Scholar 

  8. Kunitz, M. (1946) A spectrophotometric method for the measurement of ribonuclease activity. J. Biol. Chem. 164, 563–568.

    PubMed  CAS  Google Scholar 

  9. Afinsen, C. B., Redfield, R. R., Choate, W. L., Page, J., and Carrol, W. R. (1953) Studies on the gross structure, cross linkages and terminal sequences in ribonuclease. J. Biol. Chem. 207, 201–210.

    Google Scholar 

  10. Schneider, W. C. and Hogeboom, G. H., (1952) Intracellular distributions of enzymes. J. Biol. Chem. 198, 155–163.

    PubMed  CAS  Google Scholar 

  11. Markham, R. and Strominger, J. L. (1956) The action of leaf ribonuclease. Biochem. J. 64, 46p.

    Google Scholar 

  12. Libonati, M. (1971) Degradation of poly A and double stranded RNA by aggregates of pancreatic ribonuclease. Biochem. Biophys. Acta 228, 440–445.

    PubMed  CAS  Google Scholar 

  13. Anfinsen, C. B. and White, F. H., Jr. (1961) The ribonucleases: Occurrence, structure and properties, in The Enzymes, vol.VII, 2nd ed. (Boyer, P., Lardy, H., and Myrback, K., eds.), Academic, New York, pp. 95–123.

    Google Scholar 

  14. Davis, F. F. and Allen F. W. (1955) The action of ribonuclease on synthetic substrates. J. Biol. Chem. 217, 13–21.

    PubMed  CAS  Google Scholar 

  15. Beers, R. F. (1960) Hydrolysis of polyadenylic acid by pancreatic ribonuclease. J. Biol. Chem. 235, 2393–2398.

    PubMed  CAS  Google Scholar 

  16. Bain, J. A. and Rusch, H. P. (1944) A method for the assay of in biological material. J. Biol. Chem. 153, 659–667.

    CAS  Google Scholar 

  17. Berger, S. L. and Birkenmeier, C. S. (1979) Inhibition of intractable nucleases with ribonucleoside vanadyl complexes: isolation of messenger ribonucleic acid from resting lymphocytes. Biochemistry 18, 5143–5149.

    Article  PubMed  CAS  Google Scholar 

  18. Holbrook, D. J., Whichard, L. P., and Washington, M. E. (1975) Effect of nucleic acid binding compounds on the hydrolytic activity of various ribonucleases. Eur. J. Biochem. 60, 317–324.

    Article  PubMed  CAS  Google Scholar 

  19. Zimmerman, S. B. and Sandeen, G. (1966) The ribonuclease activity of crystallized pancreatic deoxyribonuclease. Anal. Biochem. 14, 269–277.

    Article  PubMed  CAS  Google Scholar 

  20. Gurney, T. and Gurney, E. G. (1984) Preparation of “RNase”-free DNase by alkylation in Methods in Molecular Biology, vol. 2: Nucleic Acids (Walker, J. M., ed.), Humana, Clifton, NJ, pp. 13–20.

    Google Scholar 

  21. Rathinasamy, T. K. and Augenstein, L. G. (1968) Photochemical yields in ribonuclease and oxidized glutathione irradiated at different wavelengths in the ultraviolet. Biophys. J. 8, 1275–1287.

    Article  PubMed  CAS  Google Scholar 

  22. Myers, R. M., Larin, Z., and Maniatis, T. (1985) Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science 230, 1242–1246.

    Article  PubMed  CAS  Google Scholar 

  23. Melton, D. A., Kreig, P. A., Rebagliati, M. R., Maniatis, T., Zinn, K., and Green, M. R. (1984) Efficient in-vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acid Res. 12, 7035–7056.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press Inc.

About this protocol

Cite this protocol

Burrell, M.M. (1993). RNase A (EC 3.1.27.5). In: Burrell, M.M. (eds) Enzymes of Molecular Biology. Methods in Molecular Biology™, vol 16. Humana Press. https://doi.org/10.1385/0-89603-234-5:263

Download citation

  • DOI: https://doi.org/10.1385/0-89603-234-5:263

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-322-1

  • Online ISBN: 978-1-59259-503-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics