Skip to main content

Yeast Display and Selections

  • Protocol
Antibody Engineering

Part of the book series: Springer Protocols Handbooks ((SPH))

In yeast surface display, yeast cells are exploited to express a protein of interest on their surface, thereby linking it to the encoding DNA within the cell. This display system has become a widely used platform for protein engineering in the past decade, as it confers eukaryotic expression important for the correct assembly of many proteins. In addition, flow cytometry allows for quantitative characterization of binding kinetics and rapid quantitative library screening. In this chapter, we present detailed protocols for yeast surface display and the isolation of naïve binders from a nonimmune scFv library using a combination of magnetic bead selections and fluorescence activated cell sorting. In addition, we describe kinetic binding and thermal stability characterization of proteins expressed via yeast surface display.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman ME, Levary D, Tobon G, Hackel BJ, Orcutt KD, Wittrup KD (2009) Highly avid magnetic bead capture; an efficient selection method for de novo protein engineering utilizing yeast surface display. Biotechnol Prog 25:774–783

    Article  PubMed  CAS  Google Scholar 

  • Antipov E, Cho AE, Wittrup KD, Klibanov AM (2008) Highly L and D enantioselective variants of horseradish peroxidase discovered by an ultrahigh-throughput selection method. Proc Natl Acad Sci USA 105:17694–17699

    Article  PubMed  CAS  Google Scholar 

  • Boder ET, Midelfort KS, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci USA 97:10701–10705

    Article  PubMed  CAS  Google Scholar 

  • Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557

    Article  PubMed  CAS  Google Scholar 

  • Boder ET, Wittrup KD (1998) Optimal screening of surface-displayed polypeptide libraries. Biotechnol Prog 14:55–62

    Article  PubMed  CAS  Google Scholar 

  • Boder ET, Wittrup KD (2000) Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol 328:430–444

    Article  PubMed  CAS  Google Scholar 

  • Bowley DR, Labrijn AF, Zwick MB, Burton DR (2007) Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng Des Sel 20:81–90

    Article  PubMed  CAS  Google Scholar 

  • Brezinsky SC, Chiang GG, Szilvasi A, Mohan S, Shapiro RI, MacLean A, Sisk W, Thill G (2003) A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods 277:141–155

    Article  PubMed  CAS  Google Scholar 

  • Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1:755–768

    Article  PubMed  CAS  Google Scholar 

  • Colby DW, Kellogg BA, Graff CP, Yeung YA, Swers JS, Wittrup KD (2004) Engineering antibody affinity by yeast surface display. Methods Enzymol 388:348–358

    Article  PubMed  CAS  Google Scholar 

  • Colemann JR, Baird CL (2006) Indicators of candida contamination in the scFv yeast display library and method for its control. Pacific Northwest National Laboratory. http://www.sysbio.org/dataresources/candidascFvLibrary060207.pdf. Cited 14 Jan 2009

  • Fandl J, Stahl N, Chen G, Yancopoulos G (2008) Isolating Cells Expressing Secreted Proteins. US Patent 7(435):553

    Google Scholar 

  • Feldhaus M, Siegel R (2004) Flow cytometric screening of yeast surface display libraries. Methods Mol Biol 263:311–332

    PubMed  CAS  Google Scholar 

  • Feldhaus MJ, Siegel RW, Opresko LK, Coleman JR, Feldhaus JM, Yeung YA, Cochran JR, Heinzelman P, Colby D, Swers J, Graff C, Wiley HS, Wittrup KD (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21:163–170

    Article  PubMed  CAS  Google Scholar 

  • Frykman S, Srienc F (1998) Quantitating secretion rates of individual cells: design of secretion assays. Biotechnol Bioeng 59:214–226

    Article  PubMed  CAS  Google Scholar 

  • Gai SA, Wittrup KD (2007) Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol 17:467–473

    Article  PubMed  CAS  Google Scholar 

  • Graff CP, Chester K, Begent R, Wittrup KD (2004) Directed evolution of an anti-carcinoembryonic antigen scFv with a 4-day monovalent dissociation half-time at 37 degrees C. Protein Eng Des Sel 17:293–304

    Article  PubMed  CAS  Google Scholar 

  • Hackel BJ, Kapila A, Wittrup KD (2008) Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling. J Mol Biol 381:1238–1252

    Article  PubMed  CAS  Google Scholar 

  • Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S, Gerngross TU (2003) Production of complex human glycoproteins in yeast. Science 301:1244–1246

    Article  PubMed  CAS  Google Scholar 

  • Kieke MC, Cho BK, Boder ET, Kranz DM, Wittrup KD (1997) Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng 10:1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Lipovsek D, Lippow SM, Hackel BJ, Gregson MW, Cheng P, Kapila A, Wittrup KD (2007) Evolution of an interloop disulfide bond in high-affinity antibody mimics based on fibronectin type III domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies. J Mol Biol 368:1024–1041

    Article  PubMed  CAS  Google Scholar 

  • Manz R, Assenmacher M, Pfluger E, Miltenyi S, Radbruch A (1995) Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc Natl Acad Sci USA 92:1921–1925

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Fukuda H, Ueda M, Tanaka A, Kondo A (2002) Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl Environ Microbiol 68:4517–4522

    Article  PubMed  CAS  Google Scholar 

  • Pepper LR, Cho YK, Boder ET, Shusta EV (2008) A decade of yeast surface display technology: where are we now? Comb Chem High Throughput Screen 11:127–134

    Article  PubMed  CAS  Google Scholar 

  • Raju TS (2008) Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr Opin Immunol 20:471–478

    Article  PubMed  CAS  Google Scholar 

  • Rakestraw JA, Baskaran AR, Wittrup KD (2006) A flow cytometric assay for screening improved heterologous protein secretion in yeast. Biotechnol Prog 22:1200–1208

    Article  PubMed  CAS  Google Scholar 

  • Razai A, Garcia-Rodriguez C, Lou J, Geren IN, Forsyth CM, Robles Y, Tsai R, Smith TJ, Smith LA, Siegel RW, Feldhaus M, Marks JD (2005) Molecular evolution of antibody affinity for sensitive detection of botulinum neurotoxin type A. J Mol Biol 351:158–169

    Article  PubMed  CAS  Google Scholar 

  • Sazinsky SL, Ott RG, Silver NW, Tidor B, Ravetch JV, Wittrup KD (2008) Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors. Proc Natl Acad Sci USA 105:20167–20172

    Article  PubMed  CAS  Google Scholar 

  • Shusta EV, Kieke MC, Parke E, Kranz DM, Wittrup KD (1999) Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. J Mol Biol 292:949–956

    Article  PubMed  CAS  Google Scholar 

  • Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94:1626–1635

    Article  PubMed  CAS  Google Scholar 

  • Sola RJ, Rodriguez-Martinez JA, Griebenow K (2007) Modulation of protein biophysical properties by chemical glycosylation: biochemical insights and biomedical implications. Cell Mol Life Sci 64:2133–2152

    Article  PubMed  CAS  Google Scholar 

  • Swers JS, Kellogg BA, Wittrup KD (2004) Shuffled antibody libraries created by in vivo homologous recombination and yeast surface display. Nucleic Acids Res 32:e36

    Article  PubMed  Google Scholar 

  • Szent-Gyorgyi C, Schmidt BF, Creeger Y, Fisher GW, Zakel KL, Adler S, Fitzpatrick JA, Woolford CA, Yan Q, Vasilev KV, Berget PB, Bruchez MP, Jarvik JW, Waggoner A (2008) Fluorogen-activating single-chain antibodies for imaging cell surface proteins. Nat Biotechnol 26:235–240

    Article  PubMed  CAS  Google Scholar 

  • van den Beucken T, Pieters H, Steukers M, van der Vaart M, Ladner RC, Hoogenboom HR, Hufton SE (2003) Affinity maturation of Fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries. FEBS Lett 546:288–294

    Article  PubMed  Google Scholar 

  • Van der Vaart JM, te biesebeke R, Chapman JW, Toschka HY, Klis FM, Verrips CT (1997) Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins. Appl Environ Microbiol 63:615–620

    PubMed  Google Scholar 

  • VanAntwerp JJ, Wittrup KD (2000) Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnol Prog 16:31–37

    Article  PubMed  CAS  Google Scholar 

  • Wang XX, Cho YK, Shusta EV (2007) Mining a yeast library for brain endothelial cell-binding antibodies. Nat Methods 4:143–145

    Article  PubMed  CAS  Google Scholar 

  • Weaver-Feldhaus JM, Lou J, Coleman JR, Siegel RW, Marks JD, Feldhaus MJ (2004) Yeast mating for combinatorial Fab library generation and surface display. FEBS Lett 564:24–34

    Article  PubMed  CAS  Google Scholar 

  • Wentz AE, Shusta EV (2007) A novel high-throughput screen reveals yeast genes that increase secretion of heterologous proteins. Appl Environ Microbiol 73:1189–1198

    Article  PubMed  CAS  Google Scholar 

  • Wong TS, Roccatano D, Zacharias M, Schwaneberg U (2006) A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol 355:858–871

    Article  PubMed  CAS  Google Scholar 

  • Yeung YA, Finney AH, Koyrakh IA, Lebowitz MS, Ghanbari HA, Wands JR, Wittrup KD (2007) Isolation and characterization of human antibodies targeting human aspartyl (asparaginyl) beta-hydroxylase. Hum Antibodies 16:163–176

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dane Wittrup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this protocol

Cite this protocol

Orcutt, K.D., Wittrup, K.D. (2010). Yeast Display and Selections. In: Kontermann, R., Dübel, S. (eds) Antibody Engineering. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01144-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01144-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01143-6

  • Online ISBN: 978-3-642-01144-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics