Skip to main content

Design and Generation of Synthetic Antibody Libraries for Phage Display

  • Protocol
  • First Online:
Monoclonal Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1131))

Abstract

Highly functional synthetic antibody libraries can be used to generate antibodies against a multitude of antigens with affinities and specificities that rival or exceed those of natural antibodies. Current design and generation of synthetic antibody libraries are dependent on our insights from previous studies of simplified synthetic antibody libraries, in addition to our knowledge of antibody structure and function and sequence diversity of natural antibody repertoires. We describe a detailed protocol for the design and generation of phage-displayed synthetic antibody libraries built on a single framework with diversity restricted to four complementarity-determining regions by using precisely designed degenerate oligonucleotides. This general methodology could be applied to generation of large, functional synthetic antibody libraries using standard supplies, equipment, and molecular biology techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  CAS  PubMed  Google Scholar 

  2. Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9:767–774

    Article  CAS  PubMed  Google Scholar 

  3. Morrow KJ Jr (2012) The new generation of antibody therapeutics: current status and future prospects. Cambridge Healthtech Institute, Needham, MA

    Google Scholar 

  4. Bradbury ARM, Sidhu S, Dübel S et al (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29:245–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Sidhu SS, Fellouse FA (2006) Synthetic therapeutic antibodies. Nat Chem Biol 2:682–688

    Article  CAS  PubMed  Google Scholar 

  6. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  CAS  PubMed  Google Scholar 

  7. Fellouse FA, Sidhu SS (2006) Making antibodies in bacteria. In: Howard GC, Kaser MR (eds) Making and using antibodies: a practical handbook. CRC, Boca Raton, FL, pp 157–180

    Google Scholar 

  8. Johnson G, Wu TT (2000) Kabat database and its applications: 30 years after the first variability plot. Nucleic Acids Res 28:214–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Fellouse FA, Li B, Compaan DM et al (2005) Molecular recognition by a binary code. J Mol Biol 348:1153–1162

    Article  CAS  PubMed  Google Scholar 

  10. Fellouse FA, Wiesmann C, Sidhu SS (2004) Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition. Proc Natl Acad Sci U S A 101:12467–12472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Fellouse FA, Esaki K, Birtalan S et al (2007) High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J Mol Biol 373:924–940

    Article  CAS  PubMed  Google Scholar 

  12. Birtalan S, Zhang Y, Fellouse FA et al (2008) The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies. J Mol Biol 377:1518–1528

    Article  CAS  PubMed  Google Scholar 

  13. Fisher RD, Ultsch M, Lingel A et al (2010) Structure of the complex between HER2 and an antibody paratope formed by side chains from tryptophan and serine. J Mol Biol 402:217–229

    Article  CAS  PubMed  Google Scholar 

  14. Sidhu SS, Li B, Chen Y et al (2004) Phage-displayed antibody libraries of synthetic heavy chain complementarity determining regions. J Mol Biol 338:299–310

    Article  CAS  PubMed  Google Scholar 

  15. Knappik A, Ge LM, Honegger A et al (2000) Fully synthetic human combinatorial antibody libraries (HUCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 296:57–86

    Article  CAS  PubMed  Google Scholar 

  16. Persson H, Ye W, Wernimont A et al (2013) CDR-H3 diversity is not required for antigen recognition by synthetic antibodies. J Mol Biol 425:803–811

    Article  CAS  PubMed  Google Scholar 

  17. Karauzum H, Chen G, Abaandou L et al (2012) Synthetic human monoclonal antibodies toward staphylococcal enterotoxin B (SEB) protective against toxic shock syndrome. J Biol Chem 287:25203–25215

    Article  CAS  PubMed  Google Scholar 

  18. Koellhoffer JF, Chen G, Sandesara RG et al (2012) Two synthetic antibodies that recognize and neutralize distinct proteolytic forms of the Ebola virus envelope glycoprotein. Chembiochem 13:2549–2557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Colwill K, Gräslund S, Persson H et al (2011) A roadmap to generate renewable protein binders to the human proteome. Nat Methods 8:551–561

    Article  CAS  PubMed  Google Scholar 

  20. Laver JD, Ancevicius K, Sollazzo P et al (2012) Synthetic antibodies as tools to probe RNA-binding protein function. Mol Biosyst 8:1650–1657

    Article  CAS  PubMed  Google Scholar 

  21. Qazi O, Rani M, Gnanam AJ et al (2011) Development of reagents and assays for the detection of pathogenic burkholderia species. Faraday Discuss 149:23–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kunkel TA, Roberts JD, Zakour RA (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol 154:367–382

    Article  CAS  PubMed  Google Scholar 

  23. Hopp TP, Prickett KS, Price VL et al (1988) A short polypeptide marker sequence useful for recombinant protein identification and purification. Nat Biotechnol 6:1204–1210

    Article  CAS  Google Scholar 

  24. Lee CV, Sidhu SS, Fuh G (2004) Bivalent antibody phage display mimics natural immunoglobulin. J Immunol Methods 284:119–132

    Article  CAS  PubMed  Google Scholar 

  25. Picken RN, Mazaitis AJ, Maas WK et al (1983) Nucleotide sequence of the gene for heat-stable enterotoxin II of Escherichia coli. Infect Immun 42:269–275

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Kabat EA, Wu TT, Perry HM et al (1991) Sequences of proteins of immunological interest, 5th edn. National Institutes of Health, Bethesda, MD

    Google Scholar 

  27. Lechner RL, Engler MJ, Richardson CC (1983) Characterization of strand displacement synthesis catalyzed by bacteriophage T7 DNA polymerase. J Biol Chem 258:11174–11184

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Chen, G., Sidhu, S.S. (2014). Design and Generation of Synthetic Antibody Libraries for Phage Display. In: Ossipow, V., Fischer, N. (eds) Monoclonal Antibodies. Methods in Molecular Biology, vol 1131. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-992-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-992-5_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-991-8

  • Online ISBN: 978-1-62703-992-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics