Skip to main content

A Simple and Fast Protocol for the Protein Complex Immunoprecipitation (Co-IP) of Effector: Host Protein Complexes

  • Protocol
  • First Online:
Plant-Pathogen Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1127))

Abstract

Plant pathogens are responsible for enormous damage in natural and cultured ecosystems. One strategy most pathogenic organisms follow is the secretion of effector proteins that manipulate the host immune system to suppress defense responses. There is considerable interest in finding host targets of pathogen effectors as this helps to shape our understanding of how those proteins work in planta. The presented protocol describes a protein complex immunoprecipitation method aimed at verifying protein–protein interactions derived from protein complementation assays like Yeast-two-Hybrid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  CAS  PubMed  Google Scholar 

  2. Kim JG et al (2008) XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in xanthomonas-infected tomato leaves. Plant Cell 20:1915–1929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Shao F et al (2003) Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301:1230–1233

    Article  CAS  PubMed  Google Scholar 

  4. Nomura K et al (2006) A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313:220–223

    Article  CAS  PubMed  Google Scholar 

  5. Nomura K et al (2011) Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis. Proc Natl Acad Sci USA 108:10774–10779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lee AHY et al (2012) A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion. PLoS Pathog 8:e1002523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Abramovitch RB et al (2006) Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity. Proc Natl Acad Sci USA 103:2851–2856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Gimenez-Ibanez S et al (2009) AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Biol 19:423–429

    Article  CAS  PubMed  Google Scholar 

  9. van Damme M et al (2012) The Irish potato famine pathogen Phytophthora infestans translocates the CRN8 kinase into host plant cells. PLoS Pathog 8:e1002875

    Article  PubMed Central  PubMed  Google Scholar 

  10. Bos J et al (2010) Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc Natl Acad Sci USA 107:9909–9914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bozkurt TO et al (2011) Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proc Natl Acad Sci USA 108:20832–20837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Saunders DGO et al (2012) Host protein BSL1 associates with Phytophthora infestans RXLR effector AVR2 and the Solanum demissum Immune receptor R2 to mediate disease resistance. Plant Cell 24:3420–3434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Mukhtar MS et al (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333:596–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37:465–487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gebert M, Dresselhaus T, Sprunck S (2008) F-actin organization and pollen tube tip growth in Arabidopsis are dependent on the gametophyte-specific Armadillo repeat protein ARO1. Plant Cell 20:2798–2814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Fabro G et al (2011) Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity. PLoS Pathog 7:e1002348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Braun P, Gingras A-C (2012) History of protein-protein interactions: from egg-white to complex networks. Proteomics 12:1478–1498

    Article  CAS  PubMed  Google Scholar 

  18. Field J et al (1988) Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol Cell Biol 8:2159–2165

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Evan GI et al (1985) Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 5:3610–3616

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Brizzard B (2008) Epitope tagging. Biotechniques 44:693–695

    Article  CAS  PubMed  Google Scholar 

  21. Nakagawa T et al (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104:34–41

    Article  CAS  PubMed  Google Scholar 

  22. Earley KW et al (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629

    Article  CAS  PubMed  Google Scholar 

  23. Caillaud M-C et al (2012) Subcellular localization of the Hpa RxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility. Plant J 69:252–265

    Article  CAS  PubMed  Google Scholar 

  24. Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  CAS  PubMed  Google Scholar 

  25. Rangan L, Vogel C, Srivastava A (2008) Analysis of context sequence surrounding translation initiation site from complete genome of model plants. Mol Biotechnol 39:207–213

    Article  CAS  PubMed  Google Scholar 

  26. Weigel D, Glazebrook J (2006) Transformation of Agrobacterium using the freeze-thaw method. CSH Protoc 2006

    Google Scholar 

  27. Latijnhouwers M et al (2005) An Arabidopsis GRIP domain protein locates to the trans-Golgi and binds the small GTPase ARL1. Plant J 44:459–470

    Article  CAS  PubMed  Google Scholar 

  28. Boevink PC, Birch PRJ, Whisson SC (2011) Imaging fluorescently tagged Phytophthora effector proteins inside infected plant tissue. Methods Mol Biol 712:195–209

    Article  CAS  PubMed  Google Scholar 

  29. Voinnet O et al (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  CAS  PubMed  Google Scholar 

  30. Win J, Kamoun S, Jones AME (2011) Purification of effector-target protein complexes via transient expression in Nicotiana benthamiana. Methods Mol Biol 712:181–194

    Article  CAS  PubMed  Google Scholar 

  31. Zeiser E et al (2011) MosSCI and gateway compatible plasmid toolkit for constitutive and inducible expression of transgenes in the C. elegans germline. PLoS ONE 6:e20082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Villefranc JA, Amigo J, Lawson ND (2007) Gateway compatible vectors for analysis of gene function in the zebrafish. Dev Dyn 236:3077–3087

    Article  CAS  PubMed  Google Scholar 

  33. Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Google Scholar 

  34. Nakagawa T et al (2007) Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci Biotechnol Biochem 71:2095–2100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

DFAT and JS are funded by the UK Biotechnology and Biological Sciences Research Council grant BB/G015066/1 to JLB. The authors thank Mrs. Rachel Clewes and Mrs. Christina Payne for their technical support. The authors thank Dr. François Parcy (University Grenoble, France) for the BIFC vectors pBIFP1-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim L. Beynon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Steinbrenner, J., Eldridge, M., Tomé, D.F.A., Beynon, J.L. (2014). A Simple and Fast Protocol for the Protein Complex Immunoprecipitation (Co-IP) of Effector: Host Protein Complexes. In: Birch, P., Jones, J., Bos, J. (eds) Plant-Pathogen Interactions. Methods in Molecular Biology, vol 1127. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-986-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-986-4_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-985-7

  • Online ISBN: 978-1-62703-986-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics